login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197024 Decimal expansion of the radius of the circle tangent to the curve y=(1/2)/(1+x^2) and to the positive x and y axes. 2
2, 3, 4, 0, 0, 5, 1, 4, 0, 5, 9, 5, 1, 3, 7, 9, 0, 1, 7, 3, 4, 7, 2, 7, 6, 2, 3, 7, 6, 7, 2, 2, 9, 9, 6, 0, 6, 2, 0, 4, 5, 8, 8, 8, 6, 4, 7, 4, 9, 5, 1, 1, 9, 4, 1, 4, 4, 3, 8, 1, 0, 3, 3, 4, 0, 3, 0, 6, 3, 4, 2, 1, 9, 4, 1, 8, 8, 9, 9, 4, 7, 3, 6, 2, 2, 0, 5, 9, 8, 6, 0, 2, 2, 8, 6, 1, 5, 2, 2, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Let (x,y) denote the point of tangency.  Then

x=0.290074091667981539080192147132694221247...

y=0.461193781487549868098884143492334039544...

slope=-0.24679469383945033223474847695422791...

(The Mathematica program includes a graph.)

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

radius=0.23400514059513790173472762376722996062...

MATHEMATICA

r = .234; c = 1/2;

Show[Plot[c/(1 + x^2), {x, 0, 0.8}],

ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]

u[x_] := (x*(1 + x^2)^3 - 2*x*c^2)/((1 + x^2)^3 - 2*c*x*(1 + x^2))

v = x /. FindRoot[c/(1 + x^2) == u[x] + Sqrt[2*u[x]*x - x^2], {x, .4, 1}, WorkingPrecision -> 100]

t = Re[v]; RealDigits[t] (* x coord. of tangency pt. *)

y = c/(1 + t^2)          (* y coord. of tangency pt. *)

radius = u[t]

RealDigits[radius] (* A197024 *)

slope = -2*c*t/(1 + t^2)^2  (* slope at tangency pt. *)

CROSSREFS

Cf. A197023, A197025.

Sequence in context: A330267 A023868 A122275 * A031235 A090141 A049264

Adjacent sequences:  A197021 A197022 A197023 * A197025 A197026 A197027

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 7 05:23 EDT 2022. Contains 357270 sequences. (Running on oeis4.)