The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197003 Decimal expansion of the slope of the line y=mx which meets the curve y=cos(x+pi/4) orthogonally over the interval [0,2*pi] (as in A197002). 2
 1, 0, 9, 3, 1, 6, 9, 7, 4, 4, 9, 8, 5, 0, 1, 6, 9, 2, 2, 0, 8, 8, 1, 5, 3, 2, 1, 4, 1, 6, 0, 5, 7, 9, 7, 1, 4, 4, 0, 4, 8, 9, 0, 6, 5, 9, 2, 9, 4, 8, 9, 8, 8, 8, 3, 5, 6, 3, 5, 1, 7, 5, 1, 3, 3, 2, 4, 9, 6, 0, 5, 3, 7, 6, 7, 0, 9, 4, 4, 7, 3, 6, 8, 3, 7, 6, 7, 0, 6, 7, 9, 9, 3, 4, 8, 1, 7, 9, 3, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See the Mathematica program for a graph. xo=0.3695425666075803208276560438369... yo=0.4039727532995172093189617400663... m=1.09316974498501692208815321416057... |OP|=0.54749949218543621432520415035... LINKS MATHEMATICA c = Pi/4; xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] RealDigits[xo] (* A197002 *) m = 1/Sin[xo + c] RealDigits[m]  (* A197003 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, 1}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic] CROSSREFS Cf. A197002, A196996, A197000. Sequence in context: A187832 A085579 A081813 * A048799 A309893 A188887 Adjacent sequences:  A197000 A197001 A197002 * A197004 A197005 A197006 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 04:48 EST 2020. Contains 332011 sequences. (Running on oeis4.)