The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197001 Decimal expansion of the slope of the line y=mx which meets the curve y=1+cos(x) orthogonally over the interval [0,2*pi] (as in A197000). 2
 1, 0, 5, 4, 1, 7, 8, 4, 4, 2, 6, 5, 6, 8, 4, 2, 1, 7, 5, 1, 5, 7, 4, 7, 7, 3, 4, 3, 0, 5, 6, 7, 3, 4, 8, 3, 7, 4, 6, 1, 4, 2, 1, 0, 4, 5, 8, 9, 1, 6, 0, 6, 6, 4, 5, 3, 6, 7, 7, 2, 1, 8, 5, 0, 7, 8, 2, 3, 8, 0, 7, 2, 5, 6, 7, 6, 3, 2, 7, 7, 7, 9, 0, 9, 4, 3, 3, 8, 4, 5, 0, 3, 2, 0, 5, 7, 5, 4, 6, 9, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS See the Mathematica program for a graph. xo=1.2488014367215508560475125020128381535587614... yo=1.3164595537507515212878992732671186100622603... m=1.05417844265684217515747734305673483746142104... |OP|=1.81454423617045980814297669595599066552030... LINKS MATHEMATICA c = 1; xo = x /.   FindRoot[x == Sin[x] (c + Cos[x]), {x, 1, 1.3}, WorkingPrecision -> 100] RealDigits[xo] (* A197000 *) m = 1/Sin[xo] RealDigits[m]  (* A197001 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{c + Cos[c*x], yo - (1/m) (x - xo)}, {x, 0, Pi}],  ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 2}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic] CROSSREFS Cf. A196700, A196996, A197002. Sequence in context: A195297 A258639 A072222 * A308714 A213055 A005752 Adjacent sequences:  A196998 A196999 A197000 * A197002 A197003 A197004 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 22:16 EST 2020. Contains 331177 sequences. (Running on oeis4.)