login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196997 Decimal expansion of m, where y=m*x is the line through (0,0) which meets the curve y=cos(3x) orthogonally at a point (x,y) satisfying 0<x<2*pi. 3
3, 5, 3, 1, 4, 0, 0, 6, 5, 6, 5, 9, 1, 2, 0, 9, 6, 7, 5, 5, 6, 6, 6, 1, 1, 1, 4, 1, 2, 7, 8, 5, 0, 3, 1, 9, 5, 4, 3, 7, 5, 6, 8, 5, 5, 0, 1, 6, 0, 6, 6, 8, 4, 3, 1, 8, 7, 7, 3, 8, 6, 5, 9, 0, 5, 2, 8, 4, 7, 1, 6, 5, 0, 1, 6, 9, 6, 6, 2, 4, 3, 6, 0, 2, 0, 2, 7, 0, 6, 6, 2, 2, 6, 8, 7, 7, 1, 8, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See the Mathematica program for a graph.

xo=0.9350272884749678361451944275323...

yo=0.3301955980451199836007253971727...

m=0.35314006565912096755666111412785...

|OP|=0.99161744799152518925689622748...

LINKS

Table of n, a(n) for n=0..98.

MATHEMATICA

c = 3;

xo = x /. FindRoot[0 == x + c*Sin[c*x] Cos[c*x], {x, .8, 1.2}, WorkingPrecision -> 100]

RealDigits[xo] (* A196996 *)

m = Sin[c*xo]/xo

RealDigits[m]  (* A196997 *)

yo = m*xo

d = Sqrt[xo^2 + yo^2]

Show[Plot[{Sin[c*x], yo - (1/m) (x - xo)}, {x, 0, Pi/c}], ContourPlot[{y == m*x}, {x, 0, 1.5}, {y, -.1, 1}], PlotRange -> All, AspectRatio -> Automatic]

CROSSREFS

Cf. A196996, A197000, A197002.

Sequence in context: A241014 A173454 A023505 * A254934 A021743 A057023

Adjacent sequences:  A196994 A196995 A196996 * A196998 A196999 A197000

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 09 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 15:37 EST 2020. Contains 331049 sequences. (Running on oeis4.)