This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196864 G.f. A(x) satisfies: A(x)^3 + A(-x)^3 = 2 and A(x)^-3 - A(-x)^-3 = -18*x. 5
 1, 3, -9, -198, 1188, 30213, -220239, -5945238, 47541735, 1325876283, -11192990913, -318640183182, 2787445591416, 80483342059224, -722019579525288, -21063846331387728, 192542324985927324, 5661585516173303268, -52508399485861250604, -1553593208517770295816 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS FORMULA G.f.: ( 2*(sqrt(1+4*3^4*x^2) + 2*3^2*x)/(sqrt(1+4*3^4*x^2) + 1) )^(1/6). EXAMPLE G.f.: A(x) = 1 + 3*x - 9*x^2 - 198*x^3 + 1188*x^4 + 30213*x^5 +... where A(x)^3 = 1 + 9*x - 729*x^3 + 118098*x^5 - 23914845*x^7 + 5423886846*x^9 +... A(x)^-3 = 1 - 9*x + 81*x^2 - 6561*x^4 + 1062882*x^6 - 215233605*x^8 +... PROG (PARI) {a(n)=local(A=[1, 3]); for(k=2, n, A=concat(A, 0); if(k%2==0, A[#A]=-Vec(Ser(A)^3)[#A]/3, A[#A]=Vec(Ser(A)^-3)[#A]/3)); A[n+1]} (PARI) {a(n)=local(X=x+x*O(x^n)); polcoeff((2*(sqrt(1+4*3^4*X^2) + 2*3^2*x)/(sqrt(1+4*3^4*X^2) + 1) )^(1/6), n)} CROSSREFS Cf. A196865, A193618, A193619, A196866, A196867, A196868, A196869. Sequence in context: A061963 A174603 A062228 * A279834 A091409 A027891 Adjacent sequences:  A196861 A196862 A196863 * A196865 A196866 A196867 KEYWORD sign AUTHOR Paul D. Hanna, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 07:00 EST 2019. Contains 329948 sequences. (Running on oeis4.)