login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196821 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=6*cos(x). 6
1, 5, 2, 0, 4, 4, 9, 4, 5, 0, 8, 3, 3, 8, 1, 6, 3, 6, 3, 1, 4, 7, 4, 5, 8, 8, 2, 0, 8, 9, 0, 5, 6, 3, 9, 6, 3, 1, 3, 8, 9, 8, 5, 3, 0, 5, 5, 8, 3, 2, 7, 8, 4, 3, 5, 1, 8, 1, 2, 8, 9, 3, 4, 0, 1, 3, 6, 8, 8, 1, 5, 5, 1, 6, 1, 1, 3, 2, 8, 2, 2, 3, 1, 6, 8, 8, 9, 2, 6, 3, 2, 4, 0, 2, 9, 2, 6, 1, 3, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..100.

EXAMPLE

x=1.5204494508338163631474588208905639631389853055832784...

MATHEMATICA

Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}]

t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100]

RealDigits[t]  (* A196816 *)

t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},

   WorkingPrecision -> 100]

RealDigits[t]   (* A196817 *)

t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},

   WorkingPrecision -> 100]

RealDigits[t]  (* A196818 *)

t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},

   WorkingPrecision -> 100]

RealDigits[t]   (* A196819 *)

t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},

   WorkingPrecision -> 100]

RealDigits[t]  (* A196820 *)

t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},

   WorkingPrecision -> 100]

RealDigits[t]  (* A196821 *)

CROSSREFS

Cf. A196914.

Sequence in context: A269328 A063377 A296493 * A147710 A153456 A021872

Adjacent sequences:  A196818 A196819 A196820 * A196822 A196823 A196824

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 15:50 EDT 2019. Contains 328223 sequences. (Running on oeis4.)