This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196819 Decimal expansion of the least x>0 satisfying 1/(1+x^2)=4*cos(x). 6
 1, 4, 9, 3, 3, 1, 9, 5, 3, 5, 7, 3, 8, 2, 4, 2, 0, 1, 9, 2, 6, 6, 6, 7, 6, 1, 8, 4, 1, 7, 9, 8, 1, 8, 4, 0, 9, 6, 2, 5, 3, 4, 9, 9, 3, 6, 9, 7, 4, 1, 5, 8, 7, 8, 6, 6, 3, 7, 2, 7, 1, 3, 8, 7, 3, 4, 2, 0, 8, 4, 6, 1, 0, 8, 8, 1, 0, 1, 5, 7, 6, 7, 9, 2, 5, 5, 0, 3, 5, 7, 5, 2, 7, 0, 2, 8, 7, 1, 1, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE x=1.4933195357382420192666761841798184096253499369741587866... MATHEMATICA Plot[{1/(1 + x^2), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, 2}] t = x /. FindRoot[1 == (1 + x^2) Cos[x], {x, 1, 1.5}, WorkingPrecision -> 100] RealDigits[t]  (* A196816 *) t = x /. FindRoot[1 == 2 (1 + x^2) Cos[x], {x, 1, 1.6},    WorkingPrecision -> 100] RealDigits[t]   (* A196817 *) t = x /. FindRoot[1 == 3 (1 + x^2) Cos[x], {x, 1, 1.6},    WorkingPrecision -> 100] RealDigits[t]  (* A196818 *) t = x /. FindRoot[1 == 4 (1 + x^2) Cos[x], {x, 1, 1.6},    WorkingPrecision -> 100] RealDigits[t]   (* A196819 *) t = x /. FindRoot[1 == 5 (1 + x^2) Cos[x], {x, 1, 1.6},    WorkingPrecision -> 100] RealDigits[t]  (* A196820 *) t = x /. FindRoot[1 == 6 (1 + x^2) Cos[x], {x, 1, 1.6},    WorkingPrecision -> 100] RealDigits[t]  (* A196821 *) CROSSREFS Cf. A196914. Sequence in context: A113970 A021957 A096301 * A296448 A217316 A159628 Adjacent sequences:  A196816 A196817 A196818 * A196820 A196821 A196822 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 20:50 EDT 2019. Contains 324145 sequences. (Running on oeis4.)