This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196775 Decimal expansion for the slope (negative) at the point of tangency of the curves y=c+1/x and y=sin(x), where c is given by A196774. 3
 2, 8, 8, 1, 0, 6, 5, 7, 2, 8, 3, 1, 2, 9, 8, 9, 6, 7, 2, 7, 3, 9, 8, 9, 5, 9, 9, 4, 5, 0, 8, 3, 9, 2, 5, 3, 4, 5, 5, 0, 0, 3, 4, 9, 2, 3, 1, 6, 1, 2, 3, 0, 3, 1, 5, 7, 6, 3, 1, 8, 7, 8, 6, 9, 3, 8, 2, 3, 1, 4, 4, 3, 9, 3, 5, 1, 0, 4, 3, 4, 2, 5, 5, 7, 7, 1, 0, 3, 5, 1, 5, 6, 7, 7, 7, 5, 6, 8, 4, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE x=-0.28810657283129896727398959945083925345500... MATHEMATICA Plot[{1/x + .42, Sin[x]}, {x, 0, 2 Pi}] t = x /. FindRoot[-1 == (x^2) Cos[x], {x, 1.5, 2.5}, WorkingPrecision -> 100] RealDigits[t]    (* A196773 *) c = N[-1/t + Sin[t], 100] RealDigits[c]    (* A196774 *) slope = N[-1/t^2, 100] RealDigits[slope](* A196775 *) CROSSREFS Cf. A196774. Sequence in context: A256166 A021976 A241294 * A021351 A011061 A282791 Adjacent sequences:  A196772 A196773 A196774 * A196776 A196777 A196778 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 14:23 EDT 2019. Contains 325185 sequences. (Running on oeis4.)