login
A196770
Decimal expansion of the least x > 0 satisfying 1 = x*sin(x - Pi/5).
5
1, 4, 1, 3, 9, 2, 2, 5, 4, 0, 9, 0, 9, 2, 9, 6, 7, 4, 0, 4, 2, 4, 4, 5, 3, 3, 3, 3, 0, 3, 6, 0, 3, 3, 1, 1, 3, 0, 4, 0, 9, 0, 1, 9, 1, 5, 7, 1, 0, 0, 0, 8, 3, 1, 5, 0, 5, 5, 0, 3, 1, 6, 0, 0, 5, 8, 0, 6, 3, 7, 8, 3, 6, 7, 5, 4, 0, 2, 7, 3, 0, 1, 2, 4, 9, 0, 2, 5, 7, 2, 8, 1, 9, 1, 2, 2, 6, 1, 8, 7
OFFSET
1,2
EXAMPLE
x=1.41392254090929674042445333303603311304090191571000...
MATHEMATICA
Plot[{1/x, Sin[x], Sin[x - Pi/2], Sin[x - Pi/3], Sin[x - Pi/4]}, {x,
0, 2 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == Sin[x - Pi/2], {x, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196767 *)
t = x /. FindRoot[1/x == Sin[x - Pi/3], {x, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196768 *)
t = x /. FindRoot[1/x == Sin[x - Pi/4], {x, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196769 *)
t = x /. FindRoot[1/x == Sin[x - Pi/5], {x, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196770 *)
t = x /. FindRoot[1/x == Sin[x - Pi/6], {x, 1, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196771 *)
CROSSREFS
Cf. A196772.
Sequence in context: A331150 A306533 A331146 * A154182 A231921 A321121
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved