This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196769 Decimal expansion of the least x>0 satisfying 1=x*sin(x-pi/4). 5
 1, 5, 0, 9, 5, 0, 6, 8, 3, 2, 2, 2, 4, 4, 7, 2, 8, 8, 5, 5, 6, 5, 3, 2, 6, 2, 2, 0, 4, 3, 7, 7, 6, 8, 5, 0, 5, 5, 3, 2, 8, 8, 0, 8, 1, 7, 0, 6, 6, 7, 1, 9, 6, 4, 6, 6, 6, 7, 2, 3, 7, 1, 0, 6, 1, 3, 4, 3, 0, 5, 4, 2, 1, 6, 9, 1, 4, 0, 3, 4, 8, 1, 5, 9, 4, 3, 3, 3, 4, 5, 5, 5, 4, 1, 1, 9, 2, 2, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE x=1.5095068322244728855653262204377685055328808170667196... MATHEMATICA Plot[{1/x, Sin[x], Sin[x - Pi/2], Sin[x - Pi/3], Sin[x - Pi/4]}, {x,   0, 2 Pi}] t = x /. FindRoot[1/x == Sin[x], {x, 1, 1.2}, WorkingPrecision -> 100] RealDigits[t]  (* A133866 *) t = x /. FindRoot[1/x == Sin[x - Pi/2], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]     (* A196767 *) t = x /. FindRoot[1/x == Sin[x - Pi/3], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]   (* A196768 *) t = x /. FindRoot[1/x == Sin[x - Pi/4], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]    (* A196769 *) t = x /. FindRoot[1/x == Sin[x - Pi/5], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]   (* A196770 *) t = x /. FindRoot[1/x == Sin[x - Pi/6], {x, 1, 2}, WorkingPrecision -> 100] RealDigits[t]    (* A196771 *) CROSSREFS Cf. A196772. Sequence in context: A199184 A159692 A271175 * A019925 A101115 A200633 Adjacent sequences:  A196766 A196767 A196768 * A196770 A196771 A196772 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 06 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 04:08 EDT 2019. Contains 325290 sequences. (Running on oeis4.)