login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196756 Decimal expansion of the least x>0 satisfying 1=5x*sin(x). 5
4, 5, 5, 0, 5, 2, 6, 3, 6, 7, 9, 4, 1, 5, 1, 9, 9, 2, 0, 4, 5, 3, 9, 7, 9, 6, 5, 1, 4, 2, 0, 4, 0, 6, 6, 9, 8, 7, 1, 8, 1, 4, 3, 7, 0, 7, 3, 0, 3, 9, 9, 0, 3, 9, 0, 9, 8, 4, 7, 9, 4, 4, 1, 2, 2, 6, 4, 4, 4, 3, 8, 2, 4, 4, 2, 6, 3, 8, 2, 6, 9, 5, 9, 2, 0, 9, 2, 1, 5, 3, 4, 5, 9, 4, 5, 0, 9, 2, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

x=0.45505263679415199204539796514204066987181437073039903...

MATHEMATICA

Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]

t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A133866 *)

t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196624 *)

t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196754 *)

t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196755 *)

t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196756 *)

t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]

RealDigits[t]  (* A196757 *)

CROSSREFS

Cf. A196758.

Sequence in context: A075464 A247858 A247860 * A103561 A198571 A119822

Adjacent sequences:  A196753 A196754 A196755 * A196757 A196758 A196759

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 06:46 EST 2018. Contains 299330 sequences. (Running on oeis4.)