login
A196756
Decimal expansion of the least x>0 satisfying 1=5x*sin(x).
5
4, 5, 5, 0, 5, 2, 6, 3, 6, 7, 9, 4, 1, 5, 1, 9, 9, 2, 0, 4, 5, 3, 9, 7, 9, 6, 5, 1, 4, 2, 0, 4, 0, 6, 6, 9, 8, 7, 1, 8, 1, 4, 3, 7, 0, 7, 3, 0, 3, 9, 9, 0, 3, 9, 0, 9, 8, 4, 7, 9, 4, 4, 1, 2, 2, 6, 4, 4, 4, 3, 8, 2, 4, 4, 2, 6, 3, 8, 2, 6, 9, 5, 9, 2, 0, 9, 2, 1, 5, 3, 4, 5, 9, 4, 5, 0, 9, 2, 1, 7
OFFSET
0,1
EXAMPLE
x=0.45505263679415199204539796514204066987181437073039903...
MATHEMATICA
Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196624 *)
t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196754 *)
t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196755 *)
t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196756 *)
t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196757 *)
CROSSREFS
Cf. A196758.
Sequence in context: A332709 A247858 A247860 * A103561 A309949 A198571
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved