login
A196755
Decimal expansion of the least x>0 satisfying 1=4x*sin(x).
5
5, 1, 1, 1, 0, 2, 2, 4, 0, 2, 6, 7, 9, 0, 3, 2, 8, 1, 1, 9, 7, 6, 3, 5, 0, 8, 6, 9, 8, 9, 5, 4, 5, 9, 4, 7, 7, 0, 9, 7, 3, 4, 2, 5, 7, 3, 8, 5, 6, 6, 8, 5, 0, 9, 8, 6, 8, 8, 4, 8, 0, 4, 0, 8, 8, 8, 8, 0, 7, 0, 5, 5, 0, 0, 0, 4, 5, 7, 7, 2, 2, 0, 7, 0, 0, 6, 0, 9, 2, 5, 9, 4, 2, 6, 4, 2, 9, 4, 5, 8, 8, 6, 7
OFFSET
0,1
EXAMPLE
x=0.51110224026790328119763508698954594770973...
MATHEMATICA
Plot[{1/x, Sin[x], 2 Sin[x], 3*Sin[x], 4 Sin[x]}, {x, 0, 2 Pi}]
t = x /. FindRoot[1/x == Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == 2 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196624 *)
t = x /. FindRoot[1/x == 3 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196754 *)
t = x /. FindRoot[1/x == 4 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196755 *)
t = x /. FindRoot[1/x == 5 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196756 *)
t = x /. FindRoot[1/x == 6 Sin[x], {x, .2, 1.4}, WorkingPrecision -> 100]
RealDigits[t] (* A196757 *)
CROSSREFS
Cf. A196758.
Sequence in context: A281446 A196840 A162298 * A199510 A146306 A336697
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 06 2011
STATUS
approved