OFFSET
0,2
COMMENTS
The number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product is A325860(n). - Gus Wiseman, Jun 03 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..50
EXAMPLE
a(6) = 58: from the 2^6=64 subsets of {1,2,3,4,5,6} only 6 do not have all the pairwise products of elements distinct: {1,2,3,6}, {2,3,4,6}, {1,2,3,4,6}, {1,2,3,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}.
MAPLE
b:= proc(n, s) local sn, m;
m:= nops(s);
sn:= [s[], n];
`if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq(
sn[i]*sn[j], j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))
end:
a:= proc(n) option remember;
b(n-1, [n]) +`if`(n=0, 0, a(n-1))
end:
seq(a(n), n=0..20);
MATHEMATICA
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] * sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]]; a[n_] := a[n] = b[n - 1, {n}] + If[n == 0, 0, a[n - 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2017, translated from Maple *)
Table[Length[Select[Subsets[Range[n]], UnsameQ@@Times@@@Subsets[#, {2}]&]], {n, 0, 10}] (* Gus Wiseman, Jun 03 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 06 2011
EXTENSIONS
Name edited by Gus Wiseman, Jun 03 2019
a(33)-a(35) from Fausto A. C. Cariboni, Oct 05 2020
STATUS
approved