OFFSET
1,1
COMMENTS
Subset of A080716.
The numbers that are not considered here belong to A062687, numbers all of whose divisors are palindromic. - Michel Marcus, Oct 10 2014
The sequence contains the terms palindromic numbers: 989, 97079, 98789, 99299, 1226221, 1794971, 13488431,…. Divisors(97079) = {1, 193, 503, 97079} and 193 + 503 = 696 = 391 + 305. Divisors(1794971) = {1, 1031, 1741, 1794971} and 1031 + 1741 = 2772 = 1301 + 1471. - Marius A. Burtea, Nov 20 2019
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (terms 1..57 from R. J. Mathar, 58..1000 from Amiram Eldar)
EXAMPLE
Divisors of 989 are 1, 23, 43, 989 and 1+23+43+989=1+32+34+989=1056.
Divisors of 8074 are 1, 2, 11, 22, 367, 734, 4037, 8074 and 1+2+11+22+367+734+4037+8074=1+2+11+22+763+437+7304+4708=13248.
MAPLE
Rev:=proc(n)
local a, i, k;
i:=convert(n, base, 10); a:=0;
for k from 1 to nops(i) do a:=a*10+i[k]; od;
a;
end:
P:=proc(j)
local h, m, n, ok, p, r, t;
for m from 1 to j do
p:=divisors(m); t:=0; ok:=0;
for r from 1 to nops(p) do t:=t+Rev(p[r]); if p[r]<>Rev(p[r]) then ok:=1; fi; od;
if ok=1 and sigma(m)=t then print(m); fi;
od;
end:
P(100000);
# alternative
isA196677 := proc(n)
isA080716(n) and not isA062687(n) ;
end proc:
n := 1;
for i from 1 do
if isA196677(i) then
printf("%d %d\n", n, i) ;
n := n+1 ;
end if;
end do: # R. J. Mathar, Sep 09 2015
PROG
(Magma) f:=func<n|Intseq(n) eq Reverse(Intseq(n))>; g:=func<n|[&+Divisors(n)] eq [&+[Seqint(Reverse(Intseq(d))):d in Divisors(n)]]>; [k:k in [1..80000]| g(k) and not forall{d:d in Divisors(k)|f(d)}]; // Marius A. Burtea, Nov 20 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Oct 05 2011
STATUS
approved