login
A196622
Decimal expansion of the least x > 0 satisfying 1 = x*cos(x - Pi/4).
3
1, 0, 3, 0, 9, 1, 5, 3, 4, 8, 5, 3, 5, 1, 1, 3, 4, 1, 1, 8, 6, 4, 3, 8, 4, 0, 1, 8, 3, 5, 3, 4, 3, 5, 6, 6, 2, 0, 9, 0, 6, 1, 6, 9, 3, 2, 9, 4, 0, 1, 9, 2, 2, 2, 3, 3, 8, 0, 6, 0, 2, 3, 3, 5, 7, 8, 9, 8, 4, 3, 2, 8, 3, 3, 5, 2, 1, 8, 0, 1, 6, 0, 6, 0, 2, 6, 9, 9, 4, 1, 7, 0, 3, 6, 1, 6, 7, 7, 6, 9
OFFSET
1,3
EXAMPLE
x=1.03091534853511341186438401835343566209061693...
MATHEMATICA
Plot[{1/x, Cos[x], Cos[x - Pi/2], Cos[x - Pi/3], Cos[x - Pi/4]}, {x,
0, 2 Pi}]
t = x /. FindRoot[1/x == Cos[x], {x, 4, 7}, WorkingPrecision -> 100]
RealDigits[t] (* A133868 *)
t = x /. FindRoot[1/x == Cos[x - Pi/2], {x, .9, 1.3}, WorkingPrecision -> 100]
RealDigits[t] (* A133866 *)
t = x /. FindRoot[1/x == Cos[x - Pi/3], {x, .9, 1.3}, WorkingPrecision -> 100]
RealDigits[t] (* A196621 *)
t = x /. FindRoot[1/x == Cos[x - Pi/4], {x, .9, 1.2}, WorkingPrecision -> 100]
RealDigits[t] (* A196622 *)
t = x /. FindRoot[1/x == Cos[x - Pi/5], {x, .9, 1.2}, WorkingPrecision -> 100]
RealDigits[t] (* A196623 *)
CROSSREFS
Sequence in context: A016645 A217764 A096429 * A196827 A243262 A191661
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 05 2011
STATUS
approved