

A196530


Decimal expansion of log(2+sqrt(3))/sqrt(3).


5



7, 6, 0, 3, 4, 5, 9, 9, 6, 3, 0, 0, 9, 4, 6, 3, 4, 7, 5, 3, 1, 0, 9, 4, 2, 5, 4, 8, 8, 0, 4, 0, 5, 8, 2, 4, 2, 0, 1, 6, 2, 7, 7, 3, 0, 9, 4, 7, 1, 7, 6, 4, 2, 7, 0, 2, 0, 5, 7, 0, 6, 7, 0, 2, 6, 0, 0, 5, 5, 1, 2, 2, 6, 5, 4, 9, 1, 0, 7, 5, 3, 0, 2, 8, 4, 5, 8, 3, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Equals the value of the Dirichlet Lseries of a nonprincipal character modulo 12 (A110161) at s=1.


REFERENCES

L. B. W. Jolley, Summation of series, Dover (1961), eq. (83), page 16.


LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Etienne Fouvry, Claude Levesque, Michel Waldschmidt, Representation of integers by cyclotomic binary forms, arXiv:1712.09019 [math.NT], 2017.
R. J. Mathar, Table of Dirichlet Lseries and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 20102015, Table in section 2.2, L(m=12,r=4,s=1).
Index entries for transcendental numbers


FORMULA

Equals A065918/A002194.
Equals Sum_{n>=1} A110161(n)/n.
Equals Sum_{k>=1} (1)^(k+1)*2^k/(k * binomial(2*k,k)).  Amiram Eldar, Aug 19 2020


EXAMPLE

0.7603459963009463475310942548...


MATHEMATICA

RealDigits[Log[2 + Sqrt[3]]/Sqrt[3], 10, 89][[1]] (* Bruno Berselli, Dec 20 2011 *)


PROG

(PARI) log(sqrt(3)+2)/sqrt(3) \\ Charles R Greathouse IV, May 15 2019


CROSSREFS

Cf. A065918, A002194, A110161.
Sequence in context: A198677 A154017 A100222 * A154850 A011236 A111508
Adjacent sequences: A196527 A196528 A196529 * A196531 A196532 A196533


KEYWORD

nonn,cons,easy


AUTHOR

R. J. Mathar, Oct 03 2011


STATUS

approved



