This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196526 a(n) is the number of ways the n-th prime number p(n) can be written as sum of coprime b and c, in which b is a positive even number and c is an odd number that is -1 or greater, and all odd prime factors of b and c are less than or equal to sqrt(p(n)). 4
 2, 1, 1, 3, 2, 3, 2, 1, 5, 5, 4, 4, 3, 4, 8, 8, 7, 7, 7, 7, 8, 7, 8, 7, 6, 6, 7, 7, 7, 12, 13, 12, 11, 12, 10, 10, 11, 11, 16, 18, 18, 18, 17, 18, 18, 17, 16, 15, 16, 17, 15, 18, 18, 18, 18, 17, 16, 18, 17, 16, 24, 24, 23, 23, 23, 23, 24, 23, 24, 24, 25, 32, 33, 34, 33, 36, 34, 35, 33, 35, 33, 32, 35, 34, 33, 33, 34, 33, 35, 34, 31, 32, 30, 35, 35, 34, 32, 32, 45 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS All terms are positive integers, no zero term. The Mathematica program generates first 99 items and the function AllSplits[n_] can be used to generate a(n) for any n > 1. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 2..1000 EXAMPLE n=2: p(2)=3 = 2 + 1 = 2^2 - 1, so a(2)=2; n=3: p(3)=5 = 2^2 + 1, so a(3)=1; ... n=10: p(10)=29, int(sqrt(29))=5, 29 = 2+3^3 = 2^2+5^2 = 2^2*5+3^2 = 2^3*3+5 = 2*3*5-1, so a(10)=5. MATHEMATICA AllPrimes[k_] := Module[{p, maxfactor, pset}, p = Prime[k];   maxfactor = NextPrime[IntegerPart[Sqrt[p]] + 1, -1];   If[maxfactor == -2, pset = {2}, p0 = 2; pset = {2};    While[p0 = NextPrime[p0]; p0 <= maxfactor,     pset = Union[pset, {p0}]]]; pset]; NextIntegerWithFactor[seed_, fset_] := Module[{m, a, l, i, fset1}, m = seed - 1;   While[m++; If[Mod[m, 2] == 1, m++]; a = FactorInteger[m];    l = Length[a]; fset1 = {};    Do[fset1 = Union[fset1, {a[[i]][[1]]}], {i, 1, l}];    Intersection[fset1, fset] != fset1]; m]; FactorSet[seed_] := Module[{fset2, a, l, i}, a = FactorInteger[seed]; l = Length[a];   fset2 = {}; Do[fset2 = Union[fset2, {a[[i]][[1]]}], {i, 1, l}];   fset2]; SplitPrime[n_, q0_] := Module[{p, pset, q, r, rp, fs, rs, qs}, p = Prime[n];   pset = AllPrimes[n]; q = q0;   While[q++; q = NextIntegerWithFactor[q, pset]; r = p - q;    rp = Abs[r]; fs = FactorSet[rp];    rs = Complement[pset, FactorSet[q]];    qs = Intersection[fs,      rs]; (fs != {1}) && (fs != qs) && (q <= (p + 1))]; {p, q, r} ]; AllSplits[n_] := Module[{q, ss, spls}, q = 0; spls = {};   While[ss = SplitPrime[n, q]; q = ss[[2]];    If[q <= (Prime[n] + 1), spls = Union[spls, {ss}]];    q < (Prime[n] + 1)]; spls]; Table[ Length[AllSplits[i]], {i, 2, 100}] (* Zhou *) zhouAbleCount[n_] := Length[Select[Range[-1, Prime[n], 2], GCD[#, Prime[n] - #] == 1 && FactorInteger[#][[-1, 1]] <= Sqrt[Prime[n]] && (IntegerQ[Log[2, Prime[n] - #]] || FactorInteger[Prime[n] - #][[-1, 1]] <= Sqrt[Prime[n]]) &]]; Table[zhouAbleCount[n], {n, 2, 100}] (* Alonso del Arte, Oct 03 2011 *) PROG (Haskell) a196526 n = length [c | let p = a000040 n,                         c <- [-1, 1..p-1], let b = p - c,                         gcd b c == 1,                         a006530 b ^ 2 < p || p == 3, a006530 c ^ 2 < p] -- Reinhard Zumkeller, Oct 04 2001 CROSSREFS Cf. A006530 (largest prime factor), A000040. Sequence in context: A179205 A055089 A060117 * A234504 A112592 A070036 Adjacent sequences:  A196523 A196524 A196525 * A196527 A196528 A196529 KEYWORD nonn,easy AUTHOR Lei Zhou, Oct 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:32 EDT 2019. Contains 328093 sequences. (Running on oeis4.)