login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n)*tau(n^2).
2

%I #44 Sep 21 2020 02:46:06

%S 1,3,6,10,12,18,18,28,30,36,30,60,36,54,72,72,48,90,54,120,108,90,66,

%T 168,100,108,126,180,84,216,90,176,180,144,216,300,108,162,216,336,

%U 120,324,126,300,360,198,138,432,210,300,288,360,156,378,360,504,324,252,174,720,180,270,540,416,432,540

%N a(n) = phi(n)*tau(n^2).

%H Vincenzo Librandi, <a href="/A196524/b196524.txt">Table of n, a(n) for n = 1..1000</a>

%H J. M. Borwein, K.-K. S. Choi, <a href="http://dx.doi.org/10.1023/A:1026230709945">On Dirichlet series for sums of squares</a>, Ramanujan J., Vol. 7 (2003), pp. 95-127.

%H Vaclav Kotesovec, <a href="/A196524/a196524.jpg">Graph - the asymptotic ratio (1000000 terms)</a>.

%F Multiplicative with a(p^e) = (2e+1)*(p-1)*p^(e-1), e>0.

%F a(n) = A048691(n)*A000010(n).

%F Dirichlet g.f.: zeta^3(s-1)*product_{primes p} (1-3/p^s -1/p^(2s-2) +4/p^(2s-1) -1/p^(3s-2)) = zeta^2(s-1)*product_{primes p} (1 +p^(1-s) +p^(1-2s) -3p^(-s)).

%F Sum_{k=1..n} a(k) ~ c * log(n)^2 * n^2 / 4, where c = A256392 = Product_{primes p} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.217778716619536378323007514119446813130797755... - _Vaclav Kotesovec_, Dec 18 2019

%F More precise asymptotics: Let f(s) = Product_{primes p} (1 - 3/p^s - 1/p^(2*s-2) + 4/p^(2*s-1) - 1/p^(3*s-2)), then Sum_{k=1..n} a(k) ~ n^2 * ((log(n)^2/4 + (3*gamma/2 - 1/4)*log(n) + 3*gamma^2/2 - 3*gamma/4 - 3*sg1/2 + 1/8)*f(2) + (log(n)/2 + 3*gamma/2 - 1/4)*f'(2) + f''(2)/4), where f(2) = A256392, f'(2) = f(2) * Sum_{primes p} (5*p - 3) * log(p) / (p^3 + p^2 - 3*p + 1) = 0.44156369228425957720874599661015191553108775903124..., f''(2) = f'(2)^2/f(2) + f(2) * Sum_{primes p} = p*(7*p^3 - 2*p^2 - 5*p + 4) * log(p)^2 / (p^3 + p^2 - 3*p + 1)^2 = -0.0925787956842332743072787717877016487612772912975..., gamma is the Euler-Mascheroni constant A001620 and sg1 is the first Stieltjes constant (see A082633). - _Vaclav Kotesovec_, Jun 18 2020

%t Table[EulerPhi[n] DivisorSigma[0, n^2], {n, 70}] (* _Alonso del Arte_, Oct 07 2011 *)

%t f[p_, e_] := (2*e+1)*(p-1)*p^(e-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 21 2020 *)

%o (PARI) a(n)=numdiv(n^2)*eulerphi(n) \\ _Charles R Greathouse IV_, Dec 07 2011

%K mult,nonn,easy

%O 1,2

%A _R. J. Mathar_, Oct 07 2011