

A196518


Decimal expansion of the number x satisfying x*e^x=5.


5



1, 3, 2, 6, 7, 2, 4, 6, 6, 5, 2, 4, 2, 2, 0, 0, 2, 2, 3, 6, 3, 5, 0, 9, 9, 2, 9, 7, 7, 5, 8, 0, 7, 9, 6, 6, 0, 1, 2, 8, 7, 9, 3, 5, 5, 4, 6, 3, 8, 0, 4, 7, 4, 7, 9, 7, 8, 9, 2, 9, 0, 3, 9, 3, 0, 2, 5, 3, 4, 2, 6, 7, 9, 9, 2, 0, 5, 3, 6, 2, 2, 6, 7, 7, 4, 4, 6, 9, 9, 1, 6, 6, 0, 8, 4, 2, 6, 7, 8, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..5000
Index entries for transcendental numbers


EXAMPLE

1.32672466524220022363509929775807966012...


MATHEMATICA

Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision > 100]
RealDigits[t] (* A030175 *)
t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision > 100]
RealDigits[t] (* A196515 *)
t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision > 100]
RealDigits[t] (* A196516 *)
t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision > 100]
RealDigits[t] (* A196517 *)
t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision > 100]
RealDigits[t] (* A196518 *)
t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision > 100]
RealDigits[t] (* A196519 *)
RealDigits[LambertW[5], 10, 50][[1]] (* G. C. Greubel, Nov 16 2017 *)


PROG

(PARI) lambertw(5) \\ G. C. Greubel, Nov 16 2017


CROSSREFS

Sequence in context: A275630 A102004 A233208 * A207636 A125764 A023897
Adjacent sequences: A196515 A196516 A196517 * A196519 A196520 A196521


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 03 2011


STATUS

approved



