This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196463 Decimal expansion of the least positive number x satisfying e^(-x)=6*sin(x). 5
 1, 4, 4, 7, 1, 5, 9, 3, 6, 6, 5, 1, 7, 2, 5, 9, 5, 1, 9, 2, 9, 1, 0, 9, 5, 3, 4, 3, 1, 9, 4, 4, 9, 2, 0, 1, 9, 9, 7, 3, 1, 8, 2, 8, 6, 8, 8, 5, 8, 0, 0, 7, 9, 6, 8, 0, 1, 7, 0, 0, 2, 6, 0, 6, 2, 0, 8, 4, 3, 4, 7, 2, 3, 4, 2, 4, 5, 5, 5, 0, 4, 8, 6, 5, 3, 9, 5, 0, 5, 9, 4, 2, 2, 3, 8, 1, 2, 2, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS EXAMPLE x=0.144715936651725951929109534319449201997318286885800796... MATHEMATICA Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* Cf. A069997 *) t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196407 *) t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196408 *) t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196409 *) t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196462 *) t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196463 *) CROSSREFS Sequence in context: A240924 A319034 A282468 * A021695 A131844 A010476 Adjacent sequences:  A196460 A196461 A196462 * A196464 A196465 A196466 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 14:17 EST 2019. Contains 319364 sequences. (Running on oeis4.)