login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196463 Decimal expansion of the least positive number x satisfying e^(-x)=6*sin(x). 5
1, 4, 4, 7, 1, 5, 9, 3, 6, 6, 5, 1, 7, 2, 5, 9, 5, 1, 9, 2, 9, 1, 0, 9, 5, 3, 4, 3, 1, 9, 4, 4, 9, 2, 0, 1, 9, 9, 7, 3, 1, 8, 2, 8, 6, 8, 8, 5, 8, 0, 0, 7, 9, 6, 8, 0, 1, 7, 0, 0, 2, 6, 0, 6, 2, 0, 8, 4, 3, 4, 7, 2, 3, 4, 2, 4, 5, 5, 5, 0, 4, 8, 6, 5, 3, 9, 5, 0, 5, 9, 4, 2, 2, 3, 8, 1, 2, 2, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

x=0.144715936651725951929109534319449201997318286885800796...

MATHEMATICA

Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]

t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* Cf. A069997 *)

t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A196407 *)

t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A196408 *)

t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A196409 *)

t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A196462 *)

t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]

RealDigits[t]  (* A196463 *)

CROSSREFS

Sequence in context: A300709 A240924 A282468 * A021695 A131844 A010476

Adjacent sequences:  A196460 A196461 A196462 * A196464 A196465 A196466

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 18:10 EDT 2018. Contains 316323 sequences. (Running on oeis4.)