login
A196463
Decimal expansion of the least positive number x satisfying e^(-x)=6*sin(x).
5
1, 4, 4, 7, 1, 5, 9, 3, 6, 6, 5, 1, 7, 2, 5, 9, 5, 1, 9, 2, 9, 1, 0, 9, 5, 3, 4, 3, 1, 9, 4, 4, 9, 2, 0, 1, 9, 9, 7, 3, 1, 8, 2, 8, 6, 8, 8, 5, 8, 0, 0, 7, 9, 6, 8, 0, 1, 7, 0, 0, 2, 6, 0, 6, 2, 0, 8, 4, 3, 4, 7, 2, 3, 4, 2, 4, 5, 5, 5, 0, 4, 8, 6, 5, 3, 9, 5, 0, 5, 9, 4, 2, 2, 3, 8, 1, 2, 2, 1, 9
OFFSET
0,2
EXAMPLE
x=0.144715936651725951929109534319449201997318286885800796...
MATHEMATICA
Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* Cf. A069997 *)
t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196407 *)
t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196408 *)
t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196409 *)
t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196462 *)
t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196463 *)
CROSSREFS
Sequence in context: A240924 A319034 A282468 * A021695 A131844 A344212
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved