The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196460 E.g.f.: A(x) = Sum_{n>=0} (1+2^n)^n * exp((1+2^n)*x) * x^n/n!. 4
 1, 5, 47, 1193, 113855, 46857665, 83540629607, 629692415941433, 19653639560140008575, 2505063418700072099312705, 1292764583816731772891346438887, 2687238342732260436646020885678131993, 22431974111110989403331425804893720873764255 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS GENERAL BINOMIAL IDENTITY. When p=1, q=2, this sequence illustrates the following identity. Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!, then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n = Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n; which is a special case of the more general binomial identity: Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k. LINKS FORMULA GENERATING FUNCTIONS. E.g.f.: Sum_{n>=0} (1 + 2^n)^n * exp( (1 + 2^n)*x ) * x^n / n!. O.g.f.: Sum_{n>=0} (1 + 2^n)^n * x^n / (1 - (1 + 2^n)*x)^(n+1). - Paul D. Hanna, Jul 13 2019 FORMULAS FOR TERMS. a(n) = Sum_{k=0..n} binomial(n,k) * (1 + 2^k)^n. a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jun 25 2013 EXAMPLE E.g.f.: A(x) = 1 + 5*x + 47*x^2/2! + 1193*x^3/3! + 113855*x^4/4! +... where A(x) = exp((1+1)*x) + (1+2)*exp((1+2)*x)*x + (1+2^2)^2*exp((1+2^2)*x)*x^2/2! + (1+2^3)^3*exp((1+2^3)*x)*x^3/3! +... or, equivalently, A(x) = exp(2*x) + 3*exp(3*x)*x + 5^2*exp(5*x)*x^2/2! + 9^3*exp(9*x)*x^3/3! + 17^4*exp(17*x)*x^4/4! + 33^5*exp(33*x)*x^5/5! +... Illustrate the formula for the terms: a(1) = (1+1) + (1+2) = 5 ; a(2) = (1+1)^2 + 2*(1+2)^2 + (1+2^2)^2 = 2^2 + 2*3^2 + 5^2 = 47 ; a(3) = (1+1)^3 + 3*(1+2)^3 + 3*(1+2^2)^3 + (1+2^3)^3 = 2^3 + 3*3^3 + 3*5^3 + 9^3 = 1193 ; a(4) = (1+1)^4 + 4*(1+2)^4 + 6*(1+2^2)^4 + 4*(1+2^3)^4 + (1+2^4)^4 = 2^4 + 4*3^4 + 6*5^4 + 4*9^4 + 17^4 = 113855. MATHEMATICA Table[Sum[Binomial[n, k]*(1+2^k)^n, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 25 2013 *) PROG (PARI) {a(n)=local(p=1, q=2); n!*polcoeff(sum(m=0, n, (p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!), n)} (PARI) {a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1); sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)} (PARI) /* right side of the general binomial identity: */ {a(n)=local(p=1, q=2, s=1, t=1, u=1, v=1); sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)} CROSSREFS Cf. A138247, A196457. Sequence in context: A140422 A145564 A159480 * A093612 A069985 A300336 Adjacent sequences:  A196457 A196458 A196459 * A196461 A196462 A196463 KEYWORD nonn AUTHOR Paul D. Hanna, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 10 22:21 EDT 2021. Contains 342856 sequences. (Running on oeis4.)