This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196458 E.g.f.: A(x) = Sum_{n>=0} (3^n + (-1)^n)^n * exp((3^n + (-1)^n)*x) * x^n/n!. 1
 1, 4, 112, 20608, 47100160, 848654393344, 152543949079048192, 239308785705492230176768, 3442046584639832610980531077120, 443426848780270385458655031044167696384, 515552048984399455145742768443316759297510080512 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS When p=-1, q=3, this sequence illustrates the following identity. Given e.g.f.: Sum_{n>=0} (p^n+q^n)^n*exp((p^n+q^n)*x)*x^n/n! = Sum_{n>=0} a(n)*x^n/n!, then a(n) = Sum_{k=0..n} C(n,k)*(p^k + q^k)^n =  Sum_{k=0..n} C(n,k)*(1 + p^(n-k)*q^k)^n; which is a special case of the more general binomial identity: Sum_{k=0..n} C(n,k)*(s*p^k + t*q^k)^(n-k) * (u*p^k + v*q^k)^k = Sum_{k=0..n} C(n,k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k. LINKS FORMULA a(n) = Sum_{k=0..n} C(n,k)*(3^k + (-1)^k)^n. a(n) = Sum_{k=0..n} C(n,k)*(1 + (-1)^(n-k)*3^k)^n. EXAMPLE E.g.f.: A(x) = 1 + 4*x + 112*x^2/2! + 20608*x^3/3! + 47100160*x^4/4! +... where _ A(x) = exp((1+1)*x) + (3-1)*exp((3-1)*x)*x + (3^2+1)^2*exp((3^2+1)*x)*x^2/2! + (3^3-1)^3*exp((3^3-1)*x)*x^3/3! +... or, equivalently, _ A(x) = exp(2*x) + 2*exp(2*x)*x + 10^2*exp(10*x)*x^2/2! + 26^3*exp(26*x)*x^3/3! + 82^4*exp(82*x)*x^4/4! + 242^5*exp(242*x)*x^5/5! +... Illustrate the formula for the terms: a(1) = (1+1) + (3-1) = 4 ; a(2) = (1+1)^2 + 2*(3-1)^2 + (3^2+1)^2 = 2^2 + 2*2^2 + 10^2 = 112 ; a(3) = (1+1)^3 + 3*(3-1)^3 + 3*(3^2+1)^3 + (3^3-1)^3 = 2^3 + 3*2^3 + 3*10^3 + 26^3 = 20608 ; a(4) = (1+1)^4 + 4*(3-1)^4 + 6*(3^2+1)^4 + 4*(3^3-1)^4 + (3^4+1)^4 = 2^4 + 4*2^4 + 6*10^4 + 4*26^4 + 82^4 = 47100160. PROG (PARI) {a(n)=n!*polcoeff(sum(m=0, n, exp((3^m+(-1)^m+x*O(x^n))*x)*(3^m+(-1)^m)^m*x^m/m!), n)} (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(3^k + (-1)^k)^n)} (PARI) {a(n)=sum(k=0, n, binomial(n, k)*(1 + (-1)^(n-k)*3^k)^n)} (PARI) {a(n)=local(p=-1, q=3); n!*polcoeff(sum(m=0, n, (p^m+q^m)^m*exp((p^m+q^m+x*O(x^n))*x)*x^m/m!), n)} (PARI) {a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1); sum(k=0, n, binomial(n, k)*(s*p^k + t*q^k)^(n-k)*(u*p^k + v*q^k)^k)} (PARI) /* right side of the general binomial identity: */ {a(n)=local(p=-1, q=3, s=1, t=1, u=1, v=1); sum(k=0, n, binomial(n, k)*(s + u*p^(n-k)*q^k)^(n-k) * (t + v*p^(n-k)*q^k)^k)} CROSSREFS Cf. A196457, A196459, A196460, A138247. Sequence in context: A013151 A006718 A185320 * A085522 A078780 A041377 Adjacent sequences:  A196455 A196456 A196457 * A196459 A196460 A196461 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .