This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196409 Decimal expansion of the least positive number x satisfying e^(-x)=4*sin(x). 5
 2, 0, 5, 0, 8, 0, 0, 4, 4, 5, 3, 9, 2, 9, 1, 6, 4, 4, 4, 5, 6, 0, 5, 1, 2, 9, 0, 8, 9, 3, 4, 7, 2, 3, 6, 2, 4, 7, 6, 2, 0, 8, 2, 0, 9, 1, 7, 7, 7, 1, 3, 6, 9, 6, 5, 8, 7, 3, 3, 5, 7, 9, 0, 1, 4, 5, 5, 8, 2, 8, 0, 3, 8, 1, 0, 9, 5, 8, 6, 4, 0, 4, 8, 5, 6, 3, 1, 3, 5, 5, 4, 7, 8, 3, 5, 7, 2, 3, 3, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE x=0.205080044539291644456051290893472362476208209177713696... MATHEMATICA Plot[{E^(-x), Sin[x], 2 Sin[x], 3 Sin[x], 4 Sin[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* Cf. A069997 *) t = x /. FindRoot[E^(-x) == 2 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196407 *) t = x /. FindRoot[E^(-x) == 3 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196408 *) t = x /. FindRoot[E^(-x) == 4 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196409 *) t = x /. FindRoot[E^(-x) == 5 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196462 *) t = x /. FindRoot[E^(-x) == 6 Sin[x], {x, 0, 1}, WorkingPrecision -> 100] RealDigits[t]  (* A196463 *) CROSSREFS Sequence in context: A048050 A078153 A104035 * A115333 A105523 A210628 Adjacent sequences:  A196406 A196407 A196408 * A196410 A196411 A196412 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .