The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196406 Decimal expansion of the least positive number x satisfying e^(-x)=6*cos(x). 6
 1, 5, 3, 4, 8, 7, 4, 8, 2, 4, 9, 6, 0, 5, 3, 5, 9, 5, 5, 6, 1, 5, 2, 6, 2, 6, 3, 4, 9, 1, 3, 9, 5, 0, 2, 3, 6, 0, 9, 1, 5, 1, 3, 9, 2, 5, 9, 1, 4, 1, 6, 0, 7, 6, 2, 7, 3, 6, 3, 2, 0, 6, 0, 4, 5, 3, 1, 8, 0, 9, 5, 6, 6, 7, 9, 2, 1, 5, 9, 3, 0, 0, 0, 6, 2, 0, 1, 6, 7, 9, 5, 2, 2, 9, 9, 3, 3, 3, 4, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS EXAMPLE x=1.53487482496053595561526263491395023609151392591416076... MATHEMATICA Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}] t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196401 *) t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196402 *) t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196403 *) t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196404 *) t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196405 *) t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196406 *) CROSSREFS Cf. A196401. Sequence in context: A004162 A319053 A109681 * A070367 A086308 A229943 Adjacent sequences:  A196403 A196404 A196405 * A196407 A196408 A196409 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 17:23 EDT 2020. Contains 333116 sequences. (Running on oeis4.)