login
A196403
Decimal expansion of the least positive number x satisfying e^(-x)=3*cos(x).
6
1, 4, 9, 6, 0, 5, 6, 1, 3, 0, 5, 8, 3, 6, 2, 2, 6, 6, 7, 2, 6, 9, 1, 8, 5, 1, 2, 4, 3, 5, 1, 3, 9, 7, 1, 1, 2, 5, 3, 4, 6, 1, 7, 7, 9, 9, 3, 5, 1, 7, 1, 2, 9, 3, 4, 6, 1, 9, 6, 1, 9, 6, 7, 9, 4, 8, 0, 2, 6, 2, 6, 9, 0, 4, 0, 6, 5, 3, 3, 7, 8, 5, 4, 7, 2, 8, 8, 9, 5, 8, 4, 0, 7, 4, 4, 6, 7, 6, 4, 0
OFFSET
1,2
EXAMPLE
x=1.496056130583622667269185124351397112534617799...
MATHEMATICA
Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100];
RealDigits[t] (* A196401 *)
t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *)
t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *)
t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *)
t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *)
t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *)
CROSSREFS
Cf. A196401.
Sequence in context: A365725 A218358 A340127 * A238557 A271181 A338146
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved