login
A196401
Decimal expansion of the least positive number x satisfying e^(-x)=cos(x).
8
1, 2, 9, 2, 6, 9, 5, 7, 1, 9, 3, 7, 3, 3, 9, 8, 3, 8, 1, 1, 6, 8, 1, 8, 9, 1, 2, 1, 5, 9, 0, 6, 0, 7, 0, 4, 9, 4, 7, 3, 0, 2, 1, 2, 3, 0, 9, 7, 0, 2, 4, 7, 9, 1, 8, 8, 3, 6, 3, 6, 9, 2, 9, 4, 9, 7, 9, 9, 4, 3, 3, 7, 4, 2, 0, 5, 8, 2, 5, 8, 4, 4, 3, 3, 2, 1, 0, 6, 6, 8, 9, 5, 3, 3, 1, 5, 7, 0, 7, 5, 9, 6
OFFSET
1,2
EXAMPLE
x=1.292695719373398381168189121590607049473021...
MATHEMATICA
Plot[{E^(-x), Cos[x], 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}]
t = x /. FindRoot[E^(-x) == Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196401 *)
t = x /. FindRoot[E^(-x) == 2 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196402 *)
t = x /. FindRoot[E^(-x) == 3 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196403 *)
t = x /. FindRoot[E^(-x) == 4 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196404 *)
t = x /. FindRoot[E^(-x) == 5 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196405 *)
t = x /. FindRoot[E^(-x) == 6 Cos[x], {x, 1, 1.6}, WorkingPrecision -> 100]; RealDigits[t] (* A196406 *)
CROSSREFS
Cf. A196396.
Sequence in context: A165715 A088928 A074957 * A377697 A199726 A171546
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 02 2011
STATUS
approved