This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196396 Decimal expansion of the positive number x satisfying e^x=2*cos(x). 7
 5, 3, 9, 7, 8, 5, 1, 6, 0, 8, 0, 9, 2, 8, 1, 1, 0, 4, 8, 4, 5, 5, 8, 9, 1, 5, 9, 7, 7, 4, 3, 8, 3, 3, 9, 4, 9, 2, 9, 5, 2, 6, 7, 0, 9, 6, 4, 8, 2, 3, 6, 3, 8, 0, 9, 2, 2, 5, 8, 8, 4, 0, 9, 1, 9, 3, 2, 1, 5, 6, 4, 1, 3, 4, 3, 8, 8, 6, 3, 1, 0, 9, 5, 4, 4, 7, 2, 9, 9, 0, 3, 9, 5, 6, 1, 6, 8, 8, 0, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS EXAMPLE x=0.539785160809281104845589159774383394929526709... MATHEMATICA Plot[{E^x, 2 Cos[x], 3 Cos[x], 4 Cos[x]}, {x, 0, Pi/2}] t = x /.   FindRoot[E^x == 2 Cos[x], {x, .5, .6}, WorkingPrecision -> 100]; RealDigits[t]  (* A196396 *) t = x /.   FindRoot[E^x == 3 Cos[x], {x, .7, .8}, WorkingPrecision -> 100]; RealDigits[t]  (* A196397 *) t = x /.   FindRoot[E^x == 4 Cos[x], {x, .8, 1.0}, WorkingPrecision -> 100]; RealDigits[t]  (* A196398 *) t = x /.   FindRoot[E^x == 5 Cos[x], {x, .8, 1.0}, WorkingPrecision -> 100]; RealDigits[t]  (* A196399 *) t = x /.   FindRoot[E^x == 6 Cos[x], {x, 1.0, 1.1}, WorkingPrecision -> 100]; RealDigits[t]  (* A196400 *) CROSSREFS Cf. A196401, A196407. Sequence in context: A118273 A242616 A073891 * A086970 A224511 A201938 Adjacent sequences:  A196393 A196394 A196395 * A196397 A196398 A196399 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 02 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 08:27 EDT 2019. Contains 326143 sequences. (Running on oeis4.)