login
A196348
Positive integers a for which there is a (1/5)-Pythagorean triple (a,b,c) satisfying a<=b.
7
5, 5, 7, 8, 9, 9, 10, 10, 11, 14, 15, 15, 15, 15, 16, 16, 16, 17, 17, 18, 18, 19, 20, 20, 21, 21, 22, 24, 24, 25, 25, 25, 25, 25, 25, 27, 28, 29, 30, 30, 30, 30, 31, 31, 32, 32, 32, 33, 34, 35, 35, 35, 35, 35, 36, 37, 38, 39, 39, 40, 40, 40, 40, 40, 41, 42, 42, 44
OFFSET
1,1
COMMENTS
See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
MATHEMATICA
z8 = 900; z9 = 250; z7 = 200;
k = 1/5; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
t[a_] := Table[d[a, b], {b, a, z8}]
u[n_] := Delete[t[n], Position[t[n], 0]]
Table[u[n], {n, 1, 15}]
t = Table[u[n], {n, 1, z8}];
Flatten[Position[t, {}]]
u = Flatten[Delete[t, Position[t, {}]]];
x[n_] := u[[3 n - 2]];
Table[x[n], {n, 1, z7}] (* A196348 *)
y[n_] := u[[3 n - 1]];
Table[y[n], {n, 1, z7}] (* A196349 *)
z[n_] := u[[3 n]];
Table[z[n], {n, 1, z7}] (* A196350 *)
x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
f = Table[x1[n], {n, 1, z9}];
x2 = Delete[f, Position[f, 0]] (* A196351 *)
g = Table[y1[n], {n, 1, z9}];
y2 = Delete[g, Position[g, 0]] (* A196352 *)
h = Table[z1[n], {n, 1, z9}];
z2 = Delete[h, Position[h, 0]] (* A196353 *)
CROSSREFS
Sequence in context: A320639 A153105 A201523 * A196351 A154583 A300916
KEYWORD
nonn
AUTHOR
Clark Kimberling, Oct 01 2011
STATUS
approved