

A196232


Number of different ways to select 5 disjoint subsets from {1..n} with equal element sum.


7



1, 3, 10, 26, 83, 322, 1182, 3971, 15662, 69371, 328016, 1460297, 6080910, 26901643, 123926071, 598722099, 2838432721, 13220493552, 63710261040, 312134646974, 1554373859464, 7673048166979, 37597940705361, 186986406578372
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

9,2


LINKS

Table of n, a(n) for n=9..32.


EXAMPLE

a(10) = 3: {1,8}, {2,7}, {3,6}, {4,5}, {9} have element sum 9; {1,9}, {2,8}, {3,7}, {4,6}, {10} have element sum 10; {1,10}, {2,9}, {3,8}, {4,7}, {5,6} have element sum 11.


MATHEMATICA

b[l_, n_, k_] := b[l, n, k] = Module[{i, j}, If[l == Array[0 &, k], 1, If[Total[l] > n*(n  1)/2, 0, b[l, n  1, k]] + Sum[If[l[[j]]  n < 0, 0, b[Sort[Table[l[[i]]  If[i == j, n, 0], {i, 1, k}]], n1, k]], {j, 1, k}] ]];
T[n_, k_] := Sum[b[Array[t &, k], n, k], {t, 2*k  1, Floor[n*(n + 1)/(2*k) ]}]/k!;
a[n_] := T[n, 5];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 9, 25}] (* JeanFrançois Alcover, Jun 08 2018, after Alois P. Heinz *)


CROSSREFS

Column k=5 of A196231. Cf. A000225, A161943, A164934, A164949, A196233, A196234, A196235, A196236, A196237.
Sequence in context: A269965 A110158 A301308 * A282282 A105660 A056681
Adjacent sequences: A196229 A196230 A196231 * A196233 A196234 A196235


KEYWORD

nonn,more


AUTHOR

Alois P. Heinz, Sep 29 2011


EXTENSIONS

a(26)a(28) from Alois P. Heinz, Sep 25 2014
a(29)a(32) from Bert Dobbelaere, Sep 05 2019


STATUS

approved



