This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A196199 Count up from -n to n for n = 0, 1, 2, ... . 6

%I

%S 0,-1,0,1,-2,-1,0,1,2,-3,-2,-1,0,1,2,3,-4,-3,-2,-1,0,1,2,3,4,-5,-4,-3,

%T -2,-1,0,1,2,3,4,5,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,-7,-6,-5,-4,-3,-2,

%U -1,0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8

%N Count up from -n to n for n = 0, 1, 2, ... .

%C This sequence contains every integer infinitely often, hence all integer sequences are subsequences.

%C This is a fractal sequence.

%C Indeed, if all terms (a(n),a(n+1)) such that a(n+1) does NOT equal a(n)+1 (<=> a(n+1) < a(n)) are deleted, the same sequence is recovered again. See A253580 for an "opposite" yet similar "fractal tree" construction. - _M. F. Hasler_, Jan 04 2015

%D Miklós Laczkovich, Conjecture and Proof, TypoTex, Budapest, 1998. See Chapter 10.

%H Reinhard Zumkeller, <a href="/A196199/b196199.txt">Rows n=0..100 of triangle, flattened</a>

%H Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012.

%F a(n) = n - t*t - t - 1, where t = floor(sqrt(n-1)). - _Boris Putievskiy_, Jan 28 2013

%F G.f.: x/(x-1)^2 + 1/(x-1)*sum(k >= 1, 2*k*x^(k^2)). The series is related to Jacobi theta functions. - _Robert Israel_, Jan 05 2015

%e Table starts:

%e 0,

%e -1, 0, 1,

%e -2, -1, 0, 1, 2,

%e -3, -2, -1, 0, 1, 2, 3,

%e ...

%e The sequence of fractions A196199/A004737 = 0/1, -1/1, 0/2, 1/1, -2/1, -1/2, 0/3, 1/2, 2/1, -3/1, -2/2, -1/3, 0/4, 1/3, 2/2, 3/1, -4/4. -3/2, ... contains every rational number (infinitely often) [Laczkovich]. - _N. J. A. Sloane_, Oct 09 2013

%p seq(seq(j-k-k^2, j=k^2 .. (k+1)^2-1), k = 0 .. 10); # _Robert Israel_, Jan 05 2015

%p # Alternatively, as a table with rows -n<=k<=n (compare A257564):

%p r := n -> (n-(n mod 2))/2: T := (n, k) -> r(n+k) - r(n-k):

%p seq(print(seq(T(n, k), k=-n..n)), n=0..6); # _Peter Luschny_, May 28 2015

%t Table[Range[-n, n], {n, 0, 9}] // Flatten

%t (* or *)

%t a[n_] := With[{t = Floor[Sqrt[n]]}, n - t (t + 1)];

%t Table[a[n], {n, 0, 99}] (* _Jean-François Alcover_, Jul 13 2018, after _Boris Putievskiy_ *)

%o (PARI) r=[];for(k=0,8,r=concat(r,vector(2*k+1,j,j-k-1)));r

%o a196199 n k = a196199_row n !! k

%o a196199_tabf = map a196199_row [0..]

%o a196199_row n = [-n..n]

%o b196199 = bFile' "A196199" (concat \$ take 101 a196199_tabf) 0

%o -- _Reinhard Zumkeller_, Sep 30 2011

%Y Cf. absolute values A053615, A002262, A002260, row lengths A005408, row sums A000004, A071797.

%Y Cf. A004737.

%K sign,tabf,easy,frac,look

%O 0,5

%A _Franklin T. Adams-Watters_, Sep 29 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 04:42 EDT 2019. Contains 322294 sequences. (Running on oeis4.)