login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196198 E.g.f. satisfies: A(x) = exp(x/A(-x)). 0
1, 1, 3, 4, -19, -64, 1207, 5440, -164071, -954368, 39943691, 284754944, -15250391099, -128749666304, 8402599565375, 81978198409216, -6309988001033167, -69853770233675776, 6194681665486634899, 76717804389440684032 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..19.

FORMULA

a(n) = Sum_{k=0..n-1} C(n,k) * (n-k)^k * (-k+1)^(n-k-1) for n>0 with a(0)=1.

E.g.f. satisfies:

_ A(x) = exp(x*exp(x/A(x))).

_ A(x) = exp(x* exp(x*exp(-x*exp(x*exp(-x*exp(x*exp(-x*...))))))).

_ A(x) = exp(x*B(x)) where B(x) = exp(x/B(x)) is the e.g.f. of A141369.

E.g.f. satisfies: x/exp(-x/A(x)) = log(A(x)). - Vaclav Kotesovec, Feb 26 2014

|a(n)| ~ c * n! / (n^(3/2) * r^n), where r = 0.5098636055230131449434409623392631606695606770070519241... is the root of the equation r*exp(1/LambertW(-I/r))/I = LambertW(-I/r), and c = 0.385745347287849929987791864025522098993432068... if n is even, and c = 0.12921599603996711137996765405025929272341118... if n is odd. - Vaclav Kotesovec, Feb 26 2014

EXAMPLE

E.g.f.: A(x) = 1 + x + 3*x^2/2! + 4*x^3/3! - 19*x^4/4! - 64*x^5/5! +...

where log(A(x)) = x/A(-x) begins:

x/A(-x) = x + 2*x^2/2! - 3*x^3/3! - 32*x^4/4! + 105*x^5/5! + 2016*x^6/6! - 10115*x^7/7! - 282624*x^8/8! +...+ n*A141369(n-1)*x^n/n! +...

MATHEMATICA

Flatten[{1, 1, 3, Table[Sum[Binomial[n, k]*(n-k)^k*(-k+1)^(n-k-1), {k, 0, n-1}], {n, 3, 20}]}] (* Vaclav Kotesovec, Feb 26 2014 *)

PROG

(PARI) {a(n)=if(n==0, 1, sum(k=0, n-1, binomial(n, k)*(n-k)^k*(-k+1)^(n-k-1)))}

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(x/subst(A, x, -x+x*O(x^n)))); n!*polcoeff(A, n)}

CROSSREFS

Cf. A141369.

Sequence in context: A196133 A025089 A041989 * A041561 A050214 A256605

Adjacent sequences:  A196195 A196196 A196197 * A196199 A196200 A196201

KEYWORD

sign

AUTHOR

Paul D. Hanna, Sep 30 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 16:08 EDT 2019. Contains 322461 sequences. (Running on oeis4.)