login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195983 G.f.: Product_{n>=1} [Product_{k=0..2*n} (1 - k*x)^(-(-1)^k*binomial(2*n,k))]^(1/n). 2
1, 0, 1, 2, 7, 32, 189, 1382, 12090, 123220, 1433760, 18750856, 272243150, 4344694984, 75590125814, 1423923579636, 28872306351182, 626986388773656, 14518030696953650, 357068944503961140, 9296168815245928682, 255409012110904594768, 7385107814017356745382 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Compare g.f. to the product:

_ exp(x) = Product_{n>=1} [Product_{k=0..n} (1 + k*x)^(-(-1)^k*binomial(n,k))]^(1/n),

more explicitly:

_ exp(x) = [(1+x)^1/(1+0*x)^1] * [(1+x)^2/((1+0*x)^1*(1+2*x)^1)]^(1/2) * [(1+x)^3*(1+3*x)^1/((1+0*x)^1*(1+2*x)^3)]^(1/3) * [(1+x)^4*(1+3*x)^4/((1+0*x)^1*(1+2*x)^6*(1+4*x)^1)]^(1/4) * ...

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..320

FORMULA

G.f.: A(x) = exp( Sum_{n>=1} 2*A000670(n)*x^(n+1)/(n+1) ) where Sum_{n>=0} A000670(n)*x^n = Sum_{n>=0} n!*x^n/Product_{k=0..n} (1-k*x).

a(n) ~ n! / (n^2 * (log(2))^n). - Vaclav Kotesovec, Nov 19 2014

EXAMPLE

G.f.: A(x) = 1 + x^2 + 2*x^3 + 7*x^4 + 32*x^5 + 189*x^6 + 1382*x^7 +...

where

A(x) = [(1-x)^2/((1-0*x)^1*(1-2*x)^1)] * [(1-x)^4*(1-3*x)^4/((1-0*x)^1*(1-2*x)^6*(1-4*x)^1)]^(1/2) * [(1-x)^6*(1-3*x)^20*(1-5*x)^6/((1-0*x)^1*(1-2*x)^15*(1-4*x)^15*(1-6*x)^1)]^(1/3) * ...

Also,

log(A(x)) = 2*x^2/2 + 6*x^3/3 + 26*x^4/4 + 150*x^5/5 + 1082*x^6/6 + 9366*x^7/7 +...+ 2*A000670(n)*x^(n+1)/(n+1) +...

thus, the logarithmic derivative equals the series:

A'(x)/A(x) = 2*x/(1-x) + 2*2!*x^2/((1-x)*(1-2*x)) + 2*3!*x^3/((1-x)*(1-2*x)*(1-3*x)) + 2*4!*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)) +...

PROG

(PARI) {a(n)=polcoeff(prod(m=1, n, prod(k=1, 2*m, (1-k*x+x*O(x^n))^(-(-1)^k*binomial(2*m, k)/m))), n)}

(PARI) /* Using o.g.f. exp( Sum_{n>=1} 2*A000670(n)*x^(n+1)/(n+1) ): */

{a(n)=polcoeff(exp(intformal(2*sum(m=1, n+1, m!*x^m/prod(k=1, m, 1-k*x+x*O(x^n))))), n)}

CROSSREFS

Cf. A000670, A084784.

Sequence in context: A000987 A006957 A189780 * A079265 A270229 A112006

Adjacent sequences:  A195980 A195981 A195982 * A195984 A195985 A195986

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 08:17 EST 2018. Contains 317275 sequences. (Running on oeis4.)