login
A195913
The denominator in a fraction expansion of log(2)-Pi/8.
6
2, 3, 12, 30, 35, 56, 90, 99, 132, 182, 195, 240, 306, 323, 380, 462, 483, 552, 650, 675, 756, 870, 899, 992, 1122, 1155, 1260, 1406, 1443, 1560, 1722, 1763, 1892, 2070, 2115, 2256, 2450, 2499, 2652, 2862, 2915
OFFSET
1,1
COMMENTS
The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence.
REFERENCES
Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
LINKS
Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
FORMULA
log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(2+x+9*x^2+14*x^3+3*x^4+3*x^5) / ((1-x)^3*(1+x+x^2)^2). - Colin Barker, Dec 17 2015
From Bernard Schott, Aug 11 2019: (Start)
k >= 1, a(3*k) = (4*k-1) * 4*k,
k >= 0, a(3*k+1) = (4*k+1) * (4*k+2),
k >= 0, a(3*k+2) = (4*k+1) * (4*k+3).
The even terms a(3*k) and a(3*k+1) come from log(2) and the odd terms a(3*k+2) come from - Pi/8. (End)
EXAMPLE
1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ...] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
KEYWORD
nonn,frac
AUTHOR
Mohammad K. Azarian, Sep 25 2011
STATUS
approved