login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195913 The denominator in a fraction expansion of log(2)-Pi/8. 6
2, 3, 12, 30, 35, 56, 90, 99, 132, 182, 195, 240, 306, 323, 380, 462, 483, 552, 650, 675, 756, 870, 899, 992, 1122, 1155, 1260, 1406, 1443, 1560, 1722, 1763, 1892, 2070, 2115, 2256, 2450, 2499, 2652, 2862, 2915 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence.

REFERENCES

Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).

LINKS

Table of n, a(n) for n=1..41.

Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.

FORMULA

log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).

Empirical g.f.: x*(2+x+9*x^2+14*x^3+3*x^4+3*x^5) / ((1-x)^3*(1+x+x^2)^2). - Colin Barker, Dec 17 2015

From Bernard Schott, Aug 11 2019: (Start)

k >= 1, a(3*k) = (4*k-1) * 4*k,

k >= 0, a(3*k+1) = (4*k+1) * (4*k+2),

k >= 0, a(3*k+2) = (4*k+1) * (4*k+3).

The even terms a(3*k) and a(3*k+1) come from log(2) and the odd terms a(3*k+2) come from - Pi/8. (End)

EXAMPLE

1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ...] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.

CROSSREFS

Cf. A195909, A195697, A195947, A164833, A118324, A098289, A075549, A016655, A019675, A161685, A144981, A168056, A004772.

Sequence in context: A228501 A089414 A260631 * A048085 A069062 A073618

Adjacent sequences:  A195910 A195911 A195912 * A195914 A195915 A195916

KEYWORD

nonn,frac

AUTHOR

Mohammad K. Azarian, Sep 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 19:25 EDT 2019. Contains 328037 sequences. (Running on oeis4.)