login
A195909
First numerator and then denominator in a fraction expansion of log(2) - Pi/8.
6
1, 2, -1, 3, 1, 12, 1, 30, -1, 35, 1, 56, 1, 90, -1, 99, 1, 132, 1, 182, -1, 195, 1, 240, 1, 306, -1, 323, 1, 380, 1, 462, -1, 483, 1, 552, 1, 650, -1, 675, 1, 756, 1, 870, -1, 899, 1, 992, 1, 1122, -1, 1155, 1
OFFSET
1,2
REFERENCES
Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
FORMULA
log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(1+2*x-2*x^2+x^3+2*x^4+9*x^5-2*x^6+14*x^7+2*x^8+3*x^9-2*x^10+3*x^11+x^12) / ((1-x)^3*(1+x)^3*(1-x+x^2)^2*(1+x+x^2)^2). - Colin Barker, Dec 17 2015
EXAMPLE
1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ... ] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
KEYWORD
frac,sign
AUTHOR
Mohammad K. Azarian, Sep 26 2011
STATUS
approved