OFFSET
0,1
COMMENTS
In the notation of A195673, this defines polynomials P(n,x,p=-3,q=2), where p and q are the values of the constant and linear order for n=0 and 1.
Row sums -- the value P(n,1,-3,2) of the polynomial -- are A130848(n+5).
For general seed values in the two top rows of the triangle, the recurrence T(n,k) = T(n-1,k) - T(n-2,k-2) defines the triangle
p;
q, 0;
q, 0, -p;
q, 0, -p-q, 0;
q, 0, -p-2q, 0, p;
q, 0, -p-3q, 0, 2p+q, 0;
and a companion triangle by adding 1 to both seed values:
p+1;
q+1, 0;
q+1, 0, -p-1;
q+1, 0, -p-q-2, 0;
q+1, 0, -p-2q-3, 0, p+1;
q+1, 0, -p-3q-4, 0, 2p+q+3, 0;
The point-by-point difference between two companions is P(n,x,p+1,q+1) - P(n,x,p,q) = S(n,x) as represented (with increasing exponents) by A053119.
FORMULA
EXAMPLE
The first few rows are
-3;
2, 0;
2, 0, 3;
2, 0, 1, 0;
2, 0, -1, 0, -3;
2, 0, -3, 0, -4, 0;
2, 0, -5, 0, -3, 0, 3;
2, 0, -7, 0, 0, 0, 7, 0;
2, 0, -9, 0, 5, 0, 10, 0, -3;
2, 0, -11, 0, 12, 0, 10, 0, -10, 0;
2, 0, -13, 0, 21, 0, 5, 0, -20, 0, 3;
MATHEMATICA
p = -3; q = 2; t[0, 0] = p; t[_, 0] = q; t[_, _?OddQ] = 0; t[n_, k_] /; k > n = 0; t[n_ /; n >= 0, k_ /; k >= 0] := t[n, k] = t[n-1, k] - t[n-2, k-2]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2012 *)
CROSSREFS
KEYWORD
AUTHOR
Paul Curtz, Sep 22 2011
STATUS
approved