login
A195607
Numerator of floor(Phi*10^n)/10^n, where phi = (sqrt(5) + 1)/2 = A001622 is the Golden Ratio.
1
1, 8, 161, 809, 809, 161803, 1618033, 16180339, 80901699, 404508497, 16180339887, 80901699437, 1618033988749, 8090169943749, 161803398874989, 809016994374947, 4045084971874737, 40450849718747371, 25281781074217107, 8090169943749474241
OFFSET
0,2
COMMENTS
Numerator of the decimal fraction of phi = 1.61803... truncated to a given number of decimal places.
The corresponding sequence for 1/phi = 0.61803... = phi-1 (also called the Golden Ratio) has a very similar behavior, because for both, the truncated decimal expansion can be simplified by the same factors 2^k*5^m.
EXAMPLE
a(3) = 161 is the numerator of 1.61 = 161/100.
a(4) = 809 is the numerator of 1.618 = 1618/1000 = 809/500.
MATHEMATICA
Floor[GoldenRatio #]/#&/@(10^Range[0, 20])//Numerator (* Harvey P. Dale, Apr 14 2023 *)
PROG
(PARI) a(n, c=sqrt(5)/2+.5)=numerator(c\.1^n/10^n) \\ M. F. Hasler, Sep 21 2011
CROSSREFS
Cf. A195603 (analog for Pi), A195604 (for e), A195606 (for gamma).
Sequence in context: A219265 A300466 A184605 * A064755 A140337 A245322
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, following a suggestion by Eric Angelini, Sep 21 2011
STATUS
approved