This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195600 Continued fraction for beta = 3/(2*log(alpha/2)); alpha = A195596. 7
 1, 1, 20, 3, 2, 7, 1, 1, 1, 12, 1, 5, 1, 91, 1, 1, 3, 87, 2, 1, 1, 1, 1, 3, 1, 9, 3, 2, 1, 1, 1, 1, 190, 1, 3, 1, 82, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 12, 6, 2, 2, 2, 3, 2, 1, 1, 1, 2, 3, 21, 1, 1, 12, 1, 7, 3, 2, 26, 3, 2, 1, 1, 1, 9, 1, 15, 4, 3, 3, 1, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS beta is used to measure the expected height of random binary search trees. LINKS B. Reed, The height of a random binary search tree, J. ACM, 50 (2003), 306-332. FORMULA beta = 3/(2*log(alpha/2)) = 3*alpha/(2*alpha-2), where alpha = A195596 = -1/W(-exp(-1)/2) and W is the Lambert W function. A195582(n)/A195583(n) = alpha*log(n) - beta*log(log(n)) + O(1). EXAMPLE 1.95302570335815413945406288542575380414251340201036319609354... MAPLE with(numtheory): alpha:= solve(alpha*log((2*exp(1))/alpha)=1, alpha): beta:= 3/(2*log(alpha/2)): cfrac(evalf(beta, 130), 100, 'quotients')[]; MATHEMATICA beta = 3/(2+2*ProductLog[-1/(2*E)]); ContinuedFraction[beta, 83] (* Jean-François Alcover, Jun 20 2013 *) CROSSREFS Cf. A195599 (decimal expansion), A195601 (Engel expansion), A195581, A195582, A195583, A195596, A195597, A195598. Sequence in context: A040390 A040391 A255860 * A118295 A070645 A248136 Adjacent sequences:  A195597 A195598 A195599 * A195601 A195602 A195603 KEYWORD nonn,cofr AUTHOR Alois P. Heinz, Sep 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 06:55 EDT 2019. Contains 328292 sequences. (Running on oeis4.)