login
A195589
G.f.: x/exp( Sum_{n>=1} a(n)*x^n/n ) = Sum_{n>=1} moebius(n)*x^n.
2
1, 3, 4, 11, 11, 30, 43, 83, 121, 243, 386, 710, 1158, 2061, 3464, 6099, 10354, 18057, 30857, 53471, 91711, 158634, 272666, 470750, 810061, 1397438, 2406226, 4149037, 7146819, 12319860, 21225143, 36583027, 63033722, 108634508, 187191953, 322598681, 555899360, 957989693
OFFSET
1,2
COMMENTS
Limit a(n+1)/a(n) = 1.7232625617 6384402416 0437963573 1635201885 2701526482 7413326383 0542284384 5757642887 ...
EXAMPLE
L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 11*x^5/5 + 30*x^6/6 +...
where
x/exp(L(x)) = x - x^2 - x^3 - x^5 + x^6 - x^7 + x^10 - x^11 - x^13 + x^14 + x^15 - x^17 +...+ moebius(n)*x^n +...
PROG
(PARI) {a(n)=n*polcoeff(-log(sum(m=0, n, moebius(m+1)*x^m)+x*O(x^n)), n)}
CROSSREFS
Cf. A195588, A008683 (Moebius), A073776.
Sequence in context: A096223 A232862 A344460 * A339578 A244005 A228236
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 20 2011
STATUS
approved