The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195562 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/4. 4
 1, 24, 40, 63, 1600, 2624, 4161, 105560, 173160, 274559, 6965376, 11425920, 18116737, 459609240, 753937576, 1195430079, 30327244480, 49748454080, 78880268481, 2001138526424, 3282644031720, 5204902289663, 132044815499520 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A195500 for a discussion and references. LINKS FORMULA Conjecture: a(n) = 65*a(n-3) + 65*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011 Empirical g.f.: x*(x^6+24*x^5+40*x^4-2*x^3+40*x^2+24*x+1) / (x^9-65*x^6-65*x^3+1). - Colin Barker, Jun 04 2015 MATHEMATICA Remove["Global`*"]; r = 1/4; z = 26; p[{f_, n_}] := (#1[[2]]/#1[[ 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ Array[FromContinuedFraction[ ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; {a, b} = ({Denominator[#1], Numerator[#1]} &)[ p[{r, z}]] (* A195562, A195563 *) Sqrt[a^2 + b^2] (* A195564 *) (* Peter J. C. Moses, Sep 02 2011 *) CROSSREFS Cf. A195500, A195563, A195564. Sequence in context: A043899 A269452 A294029 * A026040 A259217 A211567 Adjacent sequences: A195559 A195560 A195561 * A195563 A195564 A195565 KEYWORD nonn AUTHOR Clark Kimberling, Sep 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 07:58 EST 2022. Contains 358515 sequences. (Running on oeis4.)