login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195562 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/4. 4
1, 24, 40, 63, 1600, 2624, 4161, 105560, 173160, 274559, 6965376, 11425920, 18116737, 459609240, 753937576, 1195430079, 30327244480, 49748454080, 78880268481, 2001138526424, 3282644031720, 5204902289663, 132044815499520 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A195500 for a discussion and references.

LINKS

Table of n, a(n) for n=1..23.

FORMULA

Conjecture: a(n) = 65*a(n-3) + 65*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011

Empirical g.f.: x*(x^6+24*x^5+40*x^4-2*x^3+40*x^2+24*x+1) / (x^9-65*x^6-65*x^3+1). - Colin Barker, Jun 04 2015

MATHEMATICA

Remove["Global`*"];

r = 1/4; z = 26;

p[{f_, n_}] := (#1[[2]]/#1[[

1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[

2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[

Array[FromContinuedFraction[

ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];

{a, b} = ({Denominator[#1], Numerator[#1]} &)[

p[{r, z}]] (* A195562, A195563 *)

Sqrt[a^2 + b^2] (* A195564 *)

(* Peter J. C. Moses, Sep 02 2011 *)

CROSSREFS

Cf. A195500, A195563, A195564.

Sequence in context: A043899 A269452 A294029 * A026040 A259217 A211567

Adjacent sequences: A195559 A195560 A195561 * A195563 A195564 A195565

KEYWORD

nonn

AUTHOR

Clark Kimberling, Sep 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 07:58 EST 2022. Contains 358515 sequences. (Running on oeis4.)