login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195436 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 1,1,sqrt(2) right triangle ABC. 3
6, 3, 6, 2, 5, 8, 8, 2, 1, 0, 6, 1, 8, 3, 8, 3, 0, 8, 3, 9, 1, 0, 4, 9, 4, 6, 4, 7, 1, 0, 4, 3, 7, 5, 9, 8, 2, 9, 4, 2, 4, 3, 3, 0, 0, 8, 7, 6, 1, 6, 2, 8, 8, 5, 0, 0, 2, 6, 7, 6, 5, 8, 5, 1, 0, 8, 4, 8, 1, 3, 7, 7, 6, 0, 3, 6, 0, 0, 4, 4, 4, 8, 7, 7, 2, 6, 6, 5, 6, 5, 0, 1, 9, 9, 7, 7, 4, 4, 7, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A195304 for definitions and a general discussion.

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

Philo(ABC,G)=0.636258821061838308391049464710...

MATHEMATICA

a = 1; b = 1; h = 2 a/3; k = b/3;

f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f1 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (A) A195433 *)

f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f2 = (f[t])^(1/2) /. Part[s, 4]

RealDigits[%, 10, 100] (* (B)=sqrt(8/9), -1+A179587  *)

f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2

s = NSolve[D[f[t], t] == 0, t, 150]

f3 = (f[t])^(1/2) /. Part[s, 1]

RealDigits[%, 10, 100] (* (C) A195433 *)

c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)

RealDigits[%, 10, 100] (* Philo(ABC, G) A195436 *)

CROSSREFS

Cf. A195304.

Sequence in context: A248580 A008567 A233700 * A194625 A165065 A069938

Adjacent sequences:  A195433 A195434 A195435 * A195437 A195438 A195439

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Sep 18 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 03:18 EST 2016. Contains 279034 sequences.