login
A195411
Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the 3,4,5 right triangle ABC.
4
6, 2, 9, 7, 8, 7, 2, 0, 2, 2, 0, 0, 9, 1, 5, 1, 1, 5, 5, 8, 4, 3, 1, 7, 8, 2, 0, 2, 0, 7, 6, 2, 4, 2, 9, 0, 1, 2, 4, 9, 2, 0, 7, 0, 2, 7, 5, 8, 5, 4, 9, 3, 4, 3, 9, 5, 9, 7, 0, 0, 0, 9, 8, 1, 3, 7, 7, 3, 1, 1, 3, 4, 1, 0, 7, 7, 9, 5, 2, 1, 2, 0, 6, 7, 3, 6, 7, 6, 7, 3, 0, 7, 0, 5, 6, 2, 8, 1, 4, 3
OFFSET
0,1
COMMENTS
See A195304 for definitions and a general discussion.
EXAMPLE
Philo(ABC,G)=0.629787202200915115584317820207624290124920...
MATHEMATICA
a = 3; b = 4; h = 2 a/3; k = b/3;
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195304 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (B) A195305 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (C) A195306 *)
c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, G) A195411 *)
CROSSREFS
Cf. A195304.
Sequence in context: A195491 A243453 A142871 * A050235 A223536 A339410
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 18 2011
STATUS
approved