login
A195402
Decimal expansion of normalized Philo sum, Philo(ABC,I), where I=incenter of a sqrt(7),3,4 right triangle ABC.
5
6, 1, 0, 8, 8, 9, 7, 8, 0, 3, 8, 6, 3, 8, 0, 0, 0, 7, 4, 4, 2, 4, 1, 2, 8, 8, 8, 6, 7, 4, 0, 4, 2, 2, 3, 3, 0, 2, 5, 7, 0, 5, 2, 7, 6, 9, 0, 4, 5, 9, 2, 0, 9, 4, 1, 1, 5, 0, 6, 5, 9, 3, 5, 1, 6, 6, 1, 7, 2, 9, 2, 4, 7, 9, 6, 2, 1, 7, 7, 0, 5, 9, 3, 1, 4, 8, 2, 1, 9, 7, 9, 6, 3, 6, 3, 8, 7, 7, 3, 2
OFFSET
0,1
COMMENTS
See A195284 for definitions and a general discussion.
EXAMPLE
Philo(ABC,I)=0.6108897803863800074424128886740422330...
MATHEMATICA
a = Sqrt[7]; b = 3; c = 4;
f = 2 a*b/(a + b + c);
x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ]
x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ]
x3 = f*Sqrt[2]
N[x1, 100]
RealDigits[%] (* (A) A195399 *)
N[x2, 100]
RealDigits[%] (* (B) A195400 *)
N[x3, 100]
RealDigits[%] (* (C) A195401 *)
N[(x1 + x2 + x3)/(a + b + c), 100]
RealDigits[%] (* Philo(ABC, I) A195402 *)
CROSSREFS
Cf. A195284.
Sequence in context: A355415 A262704 A335245 * A176402 A204013 A127573
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 17 2011
STATUS
approved