This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195348 Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and vertex angles of degree measure 30,60,90. 3
 7, 5, 7, 8, 7, 4, 7, 6, 3, 9, 2, 6, 0, 2, 3, 9, 9, 8, 8, 1, 2, 1, 8, 6, 7, 4, 7, 4, 2, 7, 0, 0, 9, 5, 3, 0, 3, 4, 6, 7, 9, 2, 5, 4, 0, 1, 9, 4, 4, 5, 2, 0, 3, 5, 8, 4, 1, 3, 3, 3, 8, 1, 7, 4, 6, 1, 0, 0, 9, 1, 5, 8, 9, 3, 3, 7, 9, 8, 1, 0, 2, 3, 2, 1, 8, 3, 1, 2, 7, 1, 1, 0, 1, 2, 8, 5, 8, 2, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A195284 for definitions and a general discussion. LINKS EXAMPLE (A)=0.7578747639260239988121867474270095303467925401944... (A)=(4*sqrt(6-3*sqrt(3)))/(3+sqrt(3)) (B)=2-(2/3)sqrt(3) (C)=sqrt(6)-sqrt(2) MATHEMATICA a = 1; b = Sqrt[3]; c = 2; f = 2 a*b/(a + b + c); x1 = Simplify[f*Sqrt[a^2 + (b + c)^2]/(b + c) ] x2 = Simplify[f*Sqrt[b^2 + (c + a)^2]/(c + a) ] x3 = f*Sqrt[2] N[x1, 100] RealDigits[%] (* (A) A195348 *) N[x2, 100] RealDigits[%] (* (B) A093821 *) N[x3, 100] RealDigits[%] (* (C) A120683 *) N[(x1 + x2 + x3)/(a + b + c), 100] RealDigits[%] (* A195380 *) CROSSREFS Cf. A195284, A093821, A120683, A195380. Sequence in context: A194657 A230163 A143297 * A072449 A263770 A088839 Adjacent sequences:  A195345 A195346 A195347 * A195349 A195350 A195351 KEYWORD nonn,cons AUTHOR Clark Kimberling, Sep 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.