login
A195290
Decimal expansion of shortest length, (A), of segment from side AB through incenter to side AC in right triangle ABC with sidelengths (a,b,c)=(7,24,25).
3
6, 0, 6, 0, 9, 1, 5, 2, 6, 7, 3, 1, 3, 2, 6, 4, 4, 9, 4, 8, 6, 4, 3, 8, 0, 2, 4, 6, 6, 1, 2, 9, 9, 1, 7, 6, 5, 2, 9, 8, 5, 9, 3, 7, 5, 1, 6, 1, 5, 4, 9, 1, 7, 4, 2, 1, 8, 5, 7, 7, 0, 3, 0, 5, 6, 7, 4, 5, 6, 7, 7, 6, 4, 8, 3, 7, 6, 0, 1, 5, 9, 5, 0, 7, 3, 0, 8, 9, 4, 3, 2, 8, 3, 2, 7, 4, 9, 5, 9, 7
OFFSET
1,1
COMMENTS
See A195284 for definitions and a general discussion.
EXAMPLE
(A)=6.0609152673132644948643802466...
MATHEMATICA
a = 7; b = 24; c = 25;
h = a (a + c)/(a + b + c); k = a*b/(a + b + c);
f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2;
s = NSolve[D[f[t], t] == 0, t, 150]
f1 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (A) A195290 *)
f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f3 = (f[t])^(1/2) /. Part[s, 1]
RealDigits[%, 10, 100] (* (B)=7.5 *)
f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
s = NSolve[D[f[t], t] == 0, t, 150]
f2 = (f[t])^(1/2) /. Part[s, 4]
RealDigits[%, 10, 100] (* (C) A010524 *)
(f1 + f2 + f3)/(a + b + c)
RealDigits[%, 10, 100] (* Philo(ABC, I) A195292 *)
CROSSREFS
Sequence in context: A303494 A198368 A064373 * A349632 A349631 A347377
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 14 2011
STATUS
approved