This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A195110 Fractalization of the fractal sequence A002260. Interspersion fractally induced by A002260. 4
 1, 2, 1, 2, 3, 1, 4, 2, 3, 1, 4, 5, 2, 3, 1, 4, 5, 6, 2, 3, 1, 7, 4, 5, 6, 2, 3, 1, 7, 8, 4, 5, 6, 2, 3, 1, 7, 8, 9, 4, 5, 6, 2, 3, 1, 7, 8, 9, 10, 4, 5, 6, 2, 3, 1, 11, 7, 8, 9, 10, 4, 5, 6, 2, 3, 1, 11, 12, 7, 8, 9, 10, 4, 5, 6, 2, 3, 1, 11, 12, 13, 7, 8, 9, 10, 4, 5, 6, 2, 3, 1, 11, 12 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence A002260 is the fractal sequence obtained by concatenating the segments 1; 12; 123; 1234; 12345;... LINKS MATHEMATICA j[n_] := Table[k, {k, 1, n}]; t[1] = j[1]; t[n_] := Join[t[n - 1], j[n]]   (* A002260 *) t[12] p[n_] := t[20][[n]] g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A195110 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A195111 *) q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]]  (* A195112 *) CROSSREFS Cf. A194959, A002260, A195111, A195112. Sequence in context: A021475 A132224 A194961 * A167198 A295540 A133299 Adjacent sequences:  A195107 A195108 A195109 * A195111 A195112 A195113 KEYWORD nonn AUTHOR Clark Kimberling, Sep 09 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 18:56 EDT 2019. Contains 328197 sequences. (Running on oeis4.)