login
A195097
Fractalization of (1+[3n/4]), where [ ] = floor.
3
1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 5, 4, 1, 2, 3, 5, 6, 4, 1, 2, 3, 5, 6, 7, 4, 1, 2, 3, 5, 6, 7, 8, 4, 1, 2, 3, 5, 6, 7, 9, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 11, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 8, 4, 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 12, 8, 4, 1, 2, 3
OFFSET
1,3
COMMENTS
See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[3n/4]) is a subsequence ofy A037915.
MATHEMATICA
r = 3/4; p[n_] := 1 + Floor[n*r] (* A037915 *)
Table[p[n], {n, 1, 90}]
g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
f[20] (* A195097 *)
row[n_] := Position[f[30], n];
u = TableForm[Table[row[n], {n, 1, 5}]]
v[n_, k_] := Part[row[n], k];
w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
{k, 1, n}]](* A195098 *)
q[n_] := Position[w, n]; Flatten[Table[q[n],
{n, 1, 80}]](* A195099 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 08 2011
STATUS
approved