login
Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 2.
14

%I #34 Feb 16 2024 10:07:29

%S 8,24,27,36,40,54,56,88,100,104,120,125,135,136,152,168,180,184,189,

%T 196,225,232,248,250,252,264,270,280,296,297,300,312,328,343,344,351,

%U 375,376,378,396,408,424,440,441,450,456,459,468,472,484,488

%N Numbers k such that (number of prime factors of k counted with multiplicity) less (number of distinct prime factors of k) = 2.

%C From _Amiram Eldar_, Nov 07 2020: (Start)

%C Numbers whose powerful part (A057521) is either a cube of a prime (A030078) or a square of a squarefree semiprime (A085986).

%C The asymptotic density of this sequence is (6/Pi^2) * (Sum_{p prime} 1/(p^2*(p+1)) + Sum_{p<q primes} 1/(p*(p+1)*q*(q+1))) = (1/zeta(2)) * (2*P(3) + Sum_{k>=4} (-1)^(k+1)*(k-1)*P(k) + (Sum_{k>=2} (-1)^k*P(k))^2))/2 = 0.0963023158..., where P is the prime zeta function. (End)

%H Reinhard Zumkeller, <a href="/A195086/b195086.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>

%F A001222(a(n)) - A001221(a(n)) = 2.

%F A046660(a(n)) = 2. - _Reinhard Zumkeller_, Nov 29 2015

%t Select[Range[500],PrimeOmega[#]-PrimeNu[#]==2&]

%o (PARI) is(n)=bigomega(n)-omega(n)==2 \\ _Charles R Greathouse IV_, Sep 14 2015

%o (PARI) is(n)=my(f=factor(n)[,2]); vecsum(f)==#f+2 \\ _Charles R Greathouse IV_, Aug 01 2016

%o (Haskell)

%o a195086 n = a195086_list !! (n-1)

%o a195086_list = filter ((== 2) . a046660) [1..]

%o -- _Reinhard Zumkeller_, Nov 29 2015

%Y Subsequence of A048108.

%Y Subsequences: A030078 and A085986.

%Y Cf. A001221, A001222, A025487, A057521, A060687, A195069, A195087, A195088, A195089, A195090, A195091, A195092, A195093, A046660, A257851, A261256, A264959.

%K nonn

%O 1,1

%A _Harvey P. Dale_, Sep 08 2011