%I #32 Sep 08 2022 08:45:59
%S 1,4,0,9,9,4,3,4,8,5,8,6,9,9,0,8,3,7,4,1,1,9,2,1,2,9,9,9,9,8,2,3,0,7,
%T 3,0,5,0,4,4,8,1,4,2,0,1,0,3,4,3,9,8,6,6,0,9,1,6,1,9,2,7,6,8,0,3,1,4,
%U 3,4,9,7,4,6,3,1,3,1,5,0,3,4,7,1,4,5,3,9,0,5,7,6,7,4,0,7,8,8,9,0,2,6,0,5,7
%N Decimal expansion of Pi^2/7.
%D F. Aubonnet, D. Guinin and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
%H G. C. Greubel, <a href="/A195056/b195056.txt">Table of n, a(n) for n = 1..5000</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals Sum_{k>=1} A000265(k)/k^3. - _Amiram Eldar_, Jun 27 2020
%F Equals Integral_{x=0..1} log(1+x+x^2+x^3+x^4+x^5+x^6)/x dx (Aubonnet). - _Bernard Schott_, Feb 04 2022
%e 1.409943485869908374119212999982307305045...
%t RealDigits[Pi^2/7, 10, 105][[1]] (* _T. D. Noe_, Oct 05 2011 *)
%o (Magma) Pi(RealField(128))^2/7; // _G. C. Greubel_, Jun 02 2021
%o (Sage) numerical_approx(pi^2/7, digits=128) # _G. C. Greubel_, Jun 02 2021
%o (PARI) Pi^2/7 \\ _Michel Marcus_, Feb 04 2022
%Y Cf. A000265, A002388, A013661, A019674, A100044, A111003, A164102.
%K nonn,cons
%O 1,2
%A _Omar E. Pol_, Oct 04 2011
%E Extended by _T. D. Noe_, Oct 05 2011