%I #39 Dec 19 2022 15:05:53
%S 1,1,1,0,0,0,1,1,0,1,1,0,1,0,1,1,0,1,0,1,1,0,0,1,1,0,1,0,0,1,1,0,0,0,
%T 1,1,1,1,0,0,1,0,1,0,0,1,1,1,1,0,1,0,0,0,1,0,1,0,0,1,0,1,1,0,1,1,1,0,
%U 0,0,0,0,0,1,0,1,1,1,0,0,0,0,0,0,1,1
%N Parity of the spt function, A092269.
%C It appears that this is also the parity of A195052.
%C It appears that this is also the parity of the absolute values of A003475.
%C It appears that this is also the parity of A195012. - _Omar E. Pol_, May 25 2012
%H G. E. Andrews, <a href="https://doi.org/10.1515/CRELLE.2008.083">The number of smallest parts in the partitions of n</a>, J. fur Reine Angew. Math, Vol. 2008 (Issue 624), pp. 133-142.
%H G. E. Andrews, S. H. G. Chan, and B. Kim, <a href="https://doi.org/10.1016/j.jcta.2012.07.001">The odd moments of ranks and cranks</a>, JCT(A) 120:77-91 (2013).
%H G. E. Andrews, F. G. Garvan, and J. Liang, <a href="https://doi.org/10.1007/s11139-012-9369-7">Combinatorial interpretation of congruences for the spt-function</a>, Ramanujan Journal 29, 321-338 (2012). See <a href="https://qseries.org/fgarvan/papers/spt-crank.pdf">also</a>.
%H G. E. Andrews, F. G. Garvan, and J. Liang, <a href="http://doi.org/10.4064/aa158-3-1">Self-conjugate vector partitions and the parity of the spt-function</a>, Acta Arithmetica 158 (2013), 199-218.
%H A. Folsom and K. Ono, <a href="https://doi.org/10.1073/pnas.0809431105">The spt-function of Andrews</a>, PNAS, Vol. 105, No. 51.
%F a(n) = A000035(A092269(n)). - _Omar E. Pol_, Aug 06 2013
%Y Cf. A003475, A040051, A092269, A115995, A183010, A183011, A195012, A195051, A195052, A209616.
%K nonn
%O 1
%A _Omar E. Pol_, Jan 13 2012