login
A195051
Number of divisors of 24*n - 1.
3
2, 2, 2, 4, 4, 4, 2, 2, 4, 2, 2, 4, 2, 4, 2, 2, 4, 2, 8, 2, 2, 4, 4, 6, 2, 4, 2, 4, 4, 2, 2, 4, 4, 4, 2, 2, 2, 2, 8, 4, 2, 4, 2, 4, 4, 2, 6, 2, 6, 4, 2, 4, 4, 8, 2, 4, 2, 4, 4, 2, 8, 2, 2, 4, 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 4, 2, 2, 2, 4, 4, 4, 4, 4, 8, 2, 2
OFFSET
1,1
LINKS
George E. Andrews, Frank G. Garvan, and Jie Liang, Self-conjugate vector partitions and the parity of the spt-function, Acta Arith., Vol. 158, No. 3 (2013), pp. 199-218; alternative link; author's link.
FORMULA
a(n) = A000005(A183010(n)).
a(n) = 2 * A195052(n).
Sum_{k=1..n} a(k) ~ (n/3) * (log(n) + 2*gamma - 1 + 5*log(2) + 2*log(3)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 22 2023
MAPLE
seq(numtheory:-tau(24*n-1), n=1..100); # Robert Israel, Jun 27 2018
MATHEMATICA
Table[DivisorSigma[0, 24*n-1], {n, 100}] (* T. D. Noe, Jan 14 2012 *)
PROG
(GAP) List([1..100], n->Tau(24*n-1)); # Muniru A Asiru, Jun 27 2018
(PARI) a(n) = numdiv(24*n-1); \\ Amiram Eldar, Dec 22 2023
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 13 2012
STATUS
approved